Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Dec 15 2020 16:27:48
%S 1,1,2,5,11,27,76,177,428,966,2724,5986,14322,31241,68632,174364,
%T 374901,841417,1792950,3803764,7688426,18376432,37158444,80078021,
%U 163155272,335521478,658661436,1298215354,2820956914,5523327097,11240000648,22117134452,43666070406
%N Number of partitions of n into colored blocks of equal parts with colors from a set of size n such that the block with largest parts has the first color.
%H Alois P. Heinz, <a href="/A325916/b325916.txt">Table of n, a(n) for n = 0..1650</a>
%F a(n) = 1/n * [x^n] Product_{j=1..n} (1+(n-1)*x^j)/(1-x^j) for n>0, a(0)=1.
%F a(n) = A321880(n)/n for n > 0, a(0) = 1.
%e a(3) = 5: 3a, 2a1a, 2a1b, 2a1c, 111a.
%p b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, k*add(
%p (t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i) +b(n, i-1, k)))
%p end:
%p a:= n-> `if`(n=0, 1, b(n$3)/n):
%p seq(a(n), n=0..34);
%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, k Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] + b[n, i - 1, k]]];
%t a[n_] := If[n == 0, 1, b[n, n, n]/n];
%t a /@ Range[0, 34] (* _Jean-François Alcover_, Dec 15 2020, after _Alois P. Heinz_ *)
%Y Cf. A321880.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Sep 08 2019