login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321880
Number of partitions of n into colored blocks of equal parts with colors from a set of size n.
3
1, 1, 4, 15, 44, 135, 456, 1239, 3424, 8694, 27240, 65846, 171864, 406133, 960848, 2615460, 5998416, 14304089, 32273100, 72271516, 153768520, 385905072, 817485768, 1841794483, 3915726528, 8388036950, 17125197336, 35051814558, 78986793592, 160176485813
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] Product_{j=1..n} (1+(n-1)*x^j)/(1-x^j).
a(n) = A321884(n,n).
a(n) = Sum_{i=0..floor((sqrt(1+8*n)-1)/2)} n!/(n-i)! * A321878(n,i).
a(n) = n * A325916(n) for n > 0, a(n) = 1.
EXAMPLE
a(3) = 15: 3a, 3b, 3c, 2a1a, 2a1b, 2a1c, 2b1a, 2b1b, 2b1c, 2c1a, 2c1b, 2c1c, 111a, 111b, 111c.
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, k*add(
(t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i) +b(n, i-1, k)))
end:
a:= n-> b(n$3):
seq(a(n), n=0..31);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k]][n - i j], {j, 1, n/i}] k + b[n, i - 1, k]]];
a[n_] := b[n, n, n];
a /@ Range[0, 31] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)
CROSSREFS
Main diagonal of A321884.
Sequence in context: A329523 A331317 A259664 * A075673 A062827 A074448
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 27 2019
STATUS
approved