login
A329523
a(n) = n * (binomial(n + 1, 3) + 1).
0
0, 1, 4, 15, 44, 105, 216, 399, 680, 1089, 1660, 2431, 3444, 4745, 6384, 8415, 10896, 13889, 17460, 21679, 26620, 32361, 38984, 46575, 55224, 65025, 76076, 88479, 102340, 117769, 134880, 153791, 174624, 197505, 222564, 249935, 279756, 312169, 347320, 385359, 426440
OFFSET
0,3
COMMENTS
The n-th centered n-gonal pyramidal number.
REFERENCES
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), 142.
FORMULA
G.f.: x * (1 - x + 5*x^2 - x^3) / (1 - x)^5.
E.g.f.: exp(x) * x * (1 + x + x^2 + x^3 / 6).
a(n) = n * (n + 2) * (n^2 - 2*n + 3) / 6.
a(n) = n * (A000292(n-1) + 1).
a(n) = n + 2 * Sum_{k=1..n} A000330(k-1).
a(n) + a(-n) = 4 * A002415(n).
EXAMPLE
Square array begins:
(0), 1, 2, 3, 4, 5, ... A001477
0, (1), 3, 7, 14, 25, ... A004006
0, 1, (4), 11, 24, 45, ... A006527
0, 1, 5, (15), 34, 65, ... A006003 (partial sums of A005448)
0, 1, 6, 19, (44), 85, ... A005900 (partial sums of A001844)
0, 1, 7, 23, 54, (105), ... A004068 (partial sums of A005891)
...
This sequence is the main diagonal of the array.
MATHEMATICA
Table[n (Binomial[n + 1, 3] + 1), {n, 0, 40}]
nmax = 40; CoefficientList[Series[x (1 - x + 5 x^2 - x^3)/(1 - x)^5, {x, 0, nmax}], x]
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 4, 15, 44}, 41]
PROG
(Magma) [ n*(Binomial(n+1, 3)+1):n in [0..40]]; // Marius A. Burtea, Nov 15 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 41); [0] cat Coefficients(R!(x*(1-x+5*x^2-x^3)/(1-x)^5)); // Marius A. Burtea, Nov 15 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Nov 15 2019
STATUS
approved