login
A282522
Number of nX2 0..1 arrays with no 1 equal to more than two of its king-move neighbors.
1
4, 15, 43, 144, 473, 1529, 5004, 16335, 53283, 173960, 567801, 1853249, 6049204, 19744783, 64447643, 210360128, 686623961, 2241169033, 7315270172, 23877346447, 77936655891, 254388502200, 830334694009, 2710247124433, 8846359824580
OFFSET
1,1
COMMENTS
Column 2 of A282528.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) +a(n-2) +2*a(n-3) -8*a(n-4).
Empirical: G.f.: -x*(-4-3*x+6*x^2+8*x^3)/(1-3*x-x^2-2*x^3+8*x^4) . - R. J. Mathar, Feb 28 2017
EXAMPLE
Some solutions for n=4
..1..1. .1..0. .1..0. .1..1. .0..1. .0..1. .1..1. .0..1. .0..0. .0..0
..1..0. .1..1. .0..1. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .1..0
..0..0. .0..0. .0..1. .0..0. .0..0. .0..1. .0..1. .1..0. .1..0. .0..0
..1..0. .1..0. .0..1. .0..1. .0..0. .0..1. .0..1. .1..0. .0..1. .0..0
CROSSREFS
Cf. A282528.
Sequence in context: A213498 A294259 A240359 * A329523 A331317 A259664
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 17 2017
STATUS
approved