login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213498
Number of (w,x,y) with all terms in {0,...,n} and w != max(|w-x|,|x-y|,|y-w|)
3
0, 4, 15, 43, 88, 164, 267, 415, 600, 844, 1135, 1499, 1920, 2428, 3003, 3679, 4432, 5300, 6255, 7339, 8520, 9844, 11275, 12863, 14568, 16444, 18447, 20635, 22960, 25484, 28155, 31039, 34080, 37348, 40783, 44459, 48312, 52420, 56715
OFFSET
0,2
COMMENTS
a(n)+A212965 = (n+1)^3.
For a guide to related sequences, see A212959.
FORMULA
a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6).
G.f.: (4*x + 7*x^2 + 9*x^3 + 3*x^4 + x^5)/((-1 + x)^4*(1 + x)^2).
a(n) = (2*n*(4*n^2+5*n+5) - (2*n+1)*(-1)^n + 1)/8.
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w != Max[Abs[w - x], Abs[x - y], Abs[y - w]], s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 60]] (* A213498 *)
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 4, 15, 43, 88, 164}, 50] (* Harvey P. Dale, Mar 27 2020 *)
CROSSREFS
Cf. A212959.
Sequence in context: A100503 A085829 A085567 * A294259 A240359 A282522
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 14 2012
STATUS
approved