login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329521
The sixth moments of the alternated squared binomial coefficients; a(n) = Sum_{m=0..n} (-1)^m*m^6*binomial(n, m)^2.
2
0, -1, 60, -162, -5280, 20250, 128520, -569380, -1854720, 9338490, 20097000, -113704668, -181621440, 1142905764, 1447926480, -10042461000, -10529925120, 79859881530, 71384175720, -587933314540, -457825368000, 4070529226764
OFFSET
0,3
REFERENCES
H. W. Gould, Combinatorial Identities, 1972.
LINKS
FORMULA
a(n) = (-1)^((n+2)/2)*binomial(n, n/2)*(n^3*(n+1)*(3n-1)/4), if n is even,
a(n) = (-1)^((n-1)/2)*binomial(n,((n+1)/2))*(n^2*( n+1)*(n^3+n^2-9n+3)/8), if n is odd.
G.f.: x*(-1 + 60*x - 188*x^2 - 3720*x^3 + 15752*x^4 + 8400*x^5 - 90928*x^6 + 79680*x^7 + 42112*x^8 - 69120*x^9 + 17408*x^10)/(1+4*x^2)^(13/2). - Stefano Spezia, Nov 15 2019
MATHEMATICA
Table[Sum[(-1)^m*m^6*(Binomial[n, m])^2, {m, 0, n}], {n, 21}]
PROG
(Magma) [&+[(-1)^m*m^6*(Binomial(n, m))^2:m in [0..n]]:n in [0..21]]; // Marius A. Burtea, Nov 15 2019
(PARI) a(n) = sum(m=0, n, (-1)^m*m^6*binomial(n , m)^2); \\ Michel Marcus, Nov 15 2019
CROSSREFS
KEYWORD
sign
AUTHOR
Nikita D. Gogin, Nov 15 2019
STATUS
approved