|
|
A004006
|
|
a(n) = C(n,1) + C(n,2) + C(n,3), or n*(n^2 + 5)/6.
|
|
66
|
|
|
0, 1, 3, 7, 14, 25, 41, 63, 92, 129, 175, 231, 298, 377, 469, 575, 696, 833, 987, 1159, 1350, 1561, 1793, 2047, 2324, 2625, 2951, 3303, 3682, 4089, 4525, 4991, 5488, 6017, 6579, 7175, 7806, 8473, 9177, 9919, 10700, 11521, 12383, 13287, 14234, 15225
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
3-dimensional analog of centered polygonal numbers.
The Burnside group B(3,n) has order 3^a(n).
Answer to the question: if you have a tall building and 3 plates and you need to find the highest story, a plate thrown from which does not break, what is the number of stories you can handle given n tries? - Leonid Broukhis, Oct 24 2000
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=A[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=4, a(n-1)=-coeff(charpoly(A,x),x^(n-3)). - Milan Janjic, Jan 24 2010
If one formed the 3 X 3 square
| n | n+1 | n+2 |
| n+3 | n+4 | n+5 |
| n+6 | n+7 | n+8 |
and found the sum of the horizontal products n*(n + 1)*(n + 2) + (n + 3)*(n + 4)*(n + 5) + (n + 6)*(n + 7)*(n + 8) and added the sum of the vertical products n*(n + 3)*(n + 6) + (n + 1)*(n + 4)*(n + 7) + (n + 2)*(n + 5)(n + 8) one gets 6*n^3 + 72*n^2 + 318*n + 504. This will give 36 times the values of all the terms in this sequence. (End)
a(n) is divisible by n for n congruent to {1,5} mod 6. (see A007310). - Gary Detlefs, Dec 08 2011
Number of compositions with at most three parts and sum at most n.
Also the number of compositions with at most one part distinct from 1 and with a sum at most n. (End)
|
|
REFERENCES
|
W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Wiley, 1966, see p. 380.
|
|
LINKS
|
Michael Boardman, The Egg-Drop Numbers, Mathematics Magazine, 77 (2004), 368-372. [From Parthasarathy Nambi, Sep 30 2009]
T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
Laurent Saloff-Coste, Random walks on finite groups, in Probability on discrete structures, 263-346, Encyclopaedia Math. Sci., 110, Springer, 2004.
|
|
FORMULA
|
G.f.: x*(1-x+x^2)/(1-x)^4.
E.g.f.: x*(1 + x/2 + x^2/6) * exp(x).
a(-n) = -a(n).
Euler transform of length 6 sequence [3, 1, 1, 0, 0, -1]. - Michael Somos, May 04 2007
Starting (1, 3, 7, 14, ...) = binomial transform of [1, 2, 2, 1, 0, 0, 0, ...]. - Gary W. Adamson, Apr 24 2008
a(0)=0, a(1)=1, a(2)=3, a(3)=7, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Aug 21 2011
a(n) = 2*a(n-1) + (n-1) - a(n-2) with a(0) = 0, a(1) = 1. - Richard R. Forberg, Jan 23 2014
a(n) = n + Sum_{k=0..n} k*(n-k). - Gionata Neri, May 19 2018
Sum_{n>0} 1/a(n) = 3*(2*gamma + polygamma(0, 1-i*sqrt(5)) + polygamma(0, 1+i*sqrt(5))/5 = 1.6787729555834452106286261834348972248... where i denotes the imaginary unit. - Stefano Spezia, Aug 31 2023
|
|
EXAMPLE
|
G.f. = x + 3*x^2 + 7*x^3 + 14*x^4 + 25*x^5 + 41*x^6 + 63*x^7 + 92*x^8 + ... - Michael Somos, Dec 29 2019
|
|
MAPLE
|
A004006 := proc(n) n*(n^2+5)/6 ; end proc:
|
|
MATHEMATICA
|
Table[Total[Table[Binomial[n, i], {i, 3}]], {n, 0, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 1, 3, 7}, 50] (* Harvey P. Dale, Aug 21 2011 *)
|
|
PROG
|
(Haskell)
(Sage) [n*(n^2+5)/6 for n in (0..50)] # G. C. Greubel, Aug 27 2019
(GAP) List([0..50], n-> n*(n^2+5)/6); # G. C. Greubel, Aug 27 2019
|
|
CROSSREFS
|
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
|
|
KEYWORD
|
nonn,nice,easy
|
|
AUTHOR
|
Albert D. Rich (Albert_Rich(AT)msn.com)
|
|
STATUS
|
approved
|
|
|
|