login
A004126
a(n) = n*(7*n^2 - 1)/6.
21
0, 1, 9, 31, 74, 145, 251, 399, 596, 849, 1165, 1551, 2014, 2561, 3199, 3935, 4776, 5729, 6801, 7999, 9330, 10801, 12419, 14191, 16124, 18225, 20501, 22959, 25606, 28449, 31495, 34751, 38224, 41921, 45849, 50015, 54426, 59089, 64011
OFFSET
0,3
COMMENTS
3-dimensional analog of centered polygonal numbers.
Sum of n triangular numbers starting from T(n), where T = A000217. E.g., a(4) = T(4) + T(5) + T(6) + T(7) = 10 + 15 + 21 + 28 = 74. - Amarnath Murthy, Jul 16 2004
Also as a(n) = (1/6)*(7*n^3-n), n>0: structured heptagonal diamond numbers (vertex structure 8). Cf. A100179 = alternate vertex; A000447 = structured diamonds; A100145 for more on structured numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Partial sums of A069099, centered heptagonal numbers (A000566). - Jonathan Vos Post, Mar 16 2006
Binomial transform of (0, 1, 7, 7, 0, 0, 0, ...) and third partial sum of (0, 1, 6, 7, 7, 7, ...). - Gary W. Adamson, Oct 05 2015
REFERENCES
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
LINKS
T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
FORMULA
a(n) = C(2*n+1,3)-C(n+1,3), n>=0. - Zerinvary Lajos, Jan 21 2007
a(n) = A000447(n) - A000292(n). - Zerinvary Lajos, Jan 21 2007
G.f.: x*(1+5*x+x^2)/(1-x)^4. - Colin Barker, Mar 02 2012
E.g.f.: (x/6)*(7*x^2 + 21*x + 6)*exp(x). - G. C. Greubel, Oct 05 2015
a(n) = Sum_{i = n..2*n-1} A000217(i). - Bruno Berselli, Sep 06 2017
a(n) = n^3 + Sum_{k=0..n-1} k*(k+1)/2. Alternately, a(n) = A000578(n) + A000292(n-1) for n>0. - Bruno Berselli, May 23 2018
MAPLE
seq(binomial(2*n+1, 3)-binomial(n+1, 3), n=0..38); # Zerinvary Lajos, Jan 21 2007
MATHEMATICA
Table[n (7 n^2 - 1)/6, {n, 0, 80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
PROG
(Magma) [n*(7*n^2-1)/6: n in [0..50]]; // Vincenzo Librandi, May 15 2011
(Maxima) makelist(n*(7*n^2-1)/6, n, 0, 30); /* Martin Ettl, Jan 08 2013 */
(PARI) vector(100, n, n--; n*(7*n^2 - 1)/6) \\ Altug Alkan, Oct 06 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Albert D. Rich (Albert_Rich(AT)msn.com)
STATUS
approved