OFFSET
0,3
COMMENTS
3-dimensional analog of centered polygonal numbers.
Sum of n triangular numbers starting from T(n), where T = A000217. E.g., a(4) = T(4) + T(5) + T(6) + T(7) = 10 + 15 + 21 + 28 = 74. - Amarnath Murthy, Jul 16 2004
Also as a(n) = (1/6)*(7*n^3-n), n>0: structured heptagonal diamond numbers (vertex structure 8). Cf. A100179 = alternate vertex; A000447 = structured diamonds; A100145 for more on structured numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Binomial transform of (0, 1, 7, 7, 0, 0, 0, ...) and third partial sum of (0, 1, 6, 7, 7, 7, ...). - Gary W. Adamson, Oct 05 2015
REFERENCES
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..5000
T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = C(2*n+1,3)-C(n+1,3), n>=0. - Zerinvary Lajos, Jan 21 2007
G.f.: x*(1+5*x+x^2)/(1-x)^4. - Colin Barker, Mar 02 2012
E.g.f.: (x/6)*(7*x^2 + 21*x + 6)*exp(x). - G. C. Greubel, Oct 05 2015
a(n) = Sum_{i = n..2*n-1} A000217(i). - Bruno Berselli, Sep 06 2017
a(n) = n^3 + Sum_{k=0..n-1} k*(k+1)/2. Alternately, a(n) = A000578(n) + A000292(n-1) for n>0. - Bruno Berselli, May 23 2018
MAPLE
seq(binomial(2*n+1, 3)-binomial(n+1, 3), n=0..38); # Zerinvary Lajos, Jan 21 2007
MATHEMATICA
Table[n (7 n^2 - 1)/6, {n, 0, 80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
PROG
(Magma) [n*(7*n^2-1)/6: n in [0..50]]; // Vincenzo Librandi, May 15 2011
(Maxima) makelist(n*(7*n^2-1)/6, n, 0, 30); /* Martin Ettl, Jan 08 2013 */
(PARI) vector(100, n, n--; n*(7*n^2 - 1)/6) \\ Altug Alkan, Oct 06 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Albert D. Rich (Albert_Rich(AT)msn.com)
STATUS
approved