login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A069099 Centered heptagonal numbers. 63
1, 8, 22, 43, 71, 106, 148, 197, 253, 316, 386, 463, 547, 638, 736, 841, 953, 1072, 1198, 1331, 1471, 1618, 1772, 1933, 2101, 2276, 2458, 2647, 2843, 3046, 3256, 3473, 3697, 3928, 4166, 4411, 4663, 4922, 5188, 5461, 5741, 6028, 6322, 6623, 6931, 7246 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Equals the triangular numbers convolved with [ 1, 5, 1, 0, 0, 0, ...]. - Gary W. Adamson and Alexander R. Povolotsky, May 29 2009
Number of ordered pairs of integers (x,y) with abs(x) < n, abs(y) < n and abs(x + y) < n, counting twice pairs of equal numbers. - Reinhard Zumkeller, Jan 23 2012; corrected and extended by Mauro Fiorentini, Jan 01 2018
The number of pairs without repetitions is a(n) - 2n + 3 for n > 1. For example, there are 19 such pairs for n = 3: (-2, 0), (-2, 1), (-2, 2), (-1, -1), (-1, 0), (-1, 1), (-1, 2), (0, -2), (0, -1), (0, 0), (0, 1), (0, 2), (1, -2), (1, -1), (1, 0), (1, 1), (2, -2), (2, -1), (2, 0). - Mauro Fiorentini, Jan 01 2018
LINKS
Eric Weisstein's World of Mathematics, Centered Polygonal Numbers.
FORMULA
a(n) = (7*n^2 - 7*n + 2)/2.
a(n) = 1 + Sum_{k=1..n} 7*k. - Xavier Acloque, Oct 26 2003
Binomial transform of [1, 7, 7, 0, 0, 0, ...]; Narayana transform (A001263) of [1, 7, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n) = 7*n + a(n-1) - 7 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: x*(1+5*x+x^2) / (1-x)^3. - R. J. Mathar, Feb 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=8, a(2)=22. - Harvey P. Dale, Jun 04 2011
a(n) = A024966(n-1) + 1. - Omar E. Pol, Oct 03 2011
a(n) = 2*a(n-1) - a(n-2) + 7. - Ant King, Jun 17 2012
From Ant King, Jun 17 2012: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi/sqrt(7)*tanh(Pi/(2*sqrt(7))) = 1.264723171685652...
a(n) == 1 (mod 7) for all n.
The sequence of digital roots of the a(n) is period 9: repeat [1, 8, 4, 7, 8, 7, 4, 8, 1] (the period is a palindrome).
The sequence of a(n) mod 10 is period 20: repeat [1, 8, 2, 3, 1, 6, 8, 7, 3, 6, 6, 3, 7, 8, 6, 1, 3, 2, 8, 1] (the period is a palindrome).
(End)
E.g.f.: -1 + (2 + 7*x^2)*exp(x)/2. - Ilya Gutkovskiy, Jun 30 2016
a(n) = A101321(7,n-1). - R. J. Mathar, Jul 28 2016
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=1} a(n)/n! = 9*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 9/(2*e) - 1. (End)
a(n) = A003215(n-1) + A000217(n-1). - Leo Tavares, Jul 19 2022
EXAMPLE
a(5) = 71 because 71 = (7*5^2 - 7*5 + 2)/2 = (175 - 35 + 2)/2 = 142/2.
From Bruno Berselli, Oct 27 2017: (Start)
1 = -(0) + (1).
8 = -(0+1) + (2+3+4).
22 = -(0+1+2) + (3+4+5+6+7).
43 = -(0+1+2+3) + (4+5+6+7+8+9+10).
71 = -(0+1+2+3+4) + (5+6+7+8+9+10+11+12+13). (End)
MATHEMATICA
FoldList[#1 + #2 &, 1, 7 Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *)
LinearRecurrence[{3, -3, 1}, {1, 8, 22}, 50] (* Harvey P. Dale, Jun 04 2011 *)
PROG
(Haskell)
a069099 n = length
[(x, y) | x <- [-n+1..n-1], y <- [-n+1..n-1], x + y <= n - 1]
-- Reinhard Zumkeller, Jan 23 2012
(PARI) a(n)=(7*n^2-7*n+2)/2 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Cf. A000566 (heptagonal numbers).
Sequence in context: A058508 A134783 A211529 * A172473 A145067 A112684
KEYWORD
nonn,easy,nice
AUTHOR
Terrel Trotter, Jr., Apr 05 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 16 23:10 EDT 2024. Contains 371755 sequences. (Running on oeis4.)