This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A266397 Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 26880. 1
 0, 0, 9, 31, 70, 130, 215, 329, 476, 660, 885, 1155, 1474, 1846, 2275, 2765, 3320, 3944, 4641, 5415, 6270, 7210, 8239, 9361, 10580, 11900, 13325, 14859, 16506, 18270, 20155, 22165, 24304, 26576, 28985, 31535, 34230, 37074, 40071, 43225, 46540, 50020, 53669 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA From Colin Barker, Dec 29 2015: (Start) a(n) = (4*n^3+3*n^2-37*n+30)/6. a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>4. G.f.: x^3*(9-5*x) / (1-x)^4. (End) PROG (PARI) concat(vector(2), Vec(x^3*(9-5*x)/(1-x)^4 + O(x^50))) \\ Colin Barker, May 05 2016 CROSSREFS Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008586, A008585, A005843, A001477, A000217. Sequence in context: A054310 A072887 A133739 * A288419 A168297 A004126 Adjacent sequences:  A266394 A266395 A266396 * A266398 A266399 A266400 KEYWORD nonn,easy AUTHOR Philippe A.J.G. Chevalier, Dec 29 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 22:34 EDT 2019. Contains 328335 sequences. (Running on oeis4.)