login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A266395 Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 161280. 1
0, 0, 0, 0, 15, 75, 225, 525, 1050, 1890, 3150, 4950, 7425, 10725, 15015, 20475, 27300, 35700, 45900, 58140, 72675, 89775, 109725, 132825, 159390, 189750, 224250, 263250, 307125, 356265, 411075, 471975, 539400, 613800, 695640, 785400, 883575, 990675, 1107225 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

From Colin Barker, Dec 29 2015: (Start)

a(n) = 5*(n-1)*(n-2)*(n-3)*(n-4)/8.

a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>5.

G.f.: 15*x^5 / (1-x)^5.

(End)

PROG

(PARI) concat(vector(4), Vec(15*x^5/(1-x)^5 + O(x^50))) \\ Colin Barker, May 05 2016

CROSSREFS

Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008586, A008585, A005843, A001477, A000217.

Sequence in context: A296193 A135916 A211812 * A260550 A051880 A007328

Adjacent sequences:  A266392 A266393 A266394 * A266396 A266397 A266398

KEYWORD

nonn,easy

AUTHOR

Philippe A.J.G. Chevalier, Dec 29 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 22:16 EST 2019. Contains 329079 sequences. (Running on oeis4.)