login
A266395
Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 161280.
1
0, 0, 0, 0, 15, 75, 225, 525, 1050, 1890, 3150, 4950, 7425, 10725, 15015, 20475, 27300, 35700, 45900, 58140, 72675, 89775, 109725, 132825, 159390, 189750, 224250, 263250, 307125, 356265, 411075, 471975, 539400, 613800, 695640, 785400, 883575, 990675, 1107225
OFFSET
1,5
FORMULA
From Colin Barker, Dec 29 2015: (Start)
a(n) = 5*(n-1)*(n-2)*(n-3)*(n-4)/8 = 15*A000332(n-1).
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>5.
G.f.: 15*x^5 / (1-x)^5.
(End)
PROG
(PARI) concat(vector(4), Vec(15*x^5/(1-x)^5 + O(x^50))) \\ Colin Barker, May 05 2016
CROSSREFS
Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008586, A008585, A005843, A001477, A000217.
Sequence in context: A296193 A135916 A211812 * A260550 A051880 A007328
KEYWORD
nonn,easy
AUTHOR
STATUS
approved