login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266392
Decimal expansion of constant c in the asymptotic formula for connected labeled planar graphs on n vertices.
4
4, 1, 0, 4, 3, 6, 1, 1, 0, 0, 2, 5, 2, 5, 9, 7, 1, 2, 9, 1, 7, 8, 6, 0, 2, 1, 6, 0, 4, 0, 9, 8, 1, 0, 7, 2, 7, 6, 3, 1, 6, 3, 4, 0, 3, 6, 6, 4, 8, 0, 2, 3, 3, 9, 0, 4, 1, 2, 8, 6, 0, 1, 2, 8, 5, 0, 6, 6, 6, 2, 7, 8, 1, 9, 0, 8, 0, 5, 0, 2, 7, 3, 7, 4
OFFSET
-5,1
LINKS
Omer Gimenez, Marc Noy, Asymptotic enumeration and limit laws of planar graphs, J. Amer. Math. Soc. 22 (2009), 309-329.
FORMULA
Equals Kc(A266389), where function t->Kc(t) is defined in the PARI code.
Constant c where A096332(n) ~ c * A266390^n * n^(-7/2) * n!.
EXAMPLE
0.00000410436110025...
PROG
(PARI)
A266389= 0.6263716633;
Xi(t) = (1+3*t) * (1-t)^3 / ((16*t^3));
P1(t) = -2400 + 57952*t + 303862*t^2 + 466546*t^3;
P2(t) = (264775 + 76679*t + 11495*t^2 + 739*t^3) * t^4;
P(t) = P1(t) + P2(t);
Q(t) = 400 + 1808*t + 2527*t^2 + 1155*t^3 + 237*t^4 + 17*t^5;
S(t) = 144 + 592*t + 664*t^2 + 135*t^3 + 6*t^4 - 5*t^5;
B41(t) = log((1+t)/sqrt(1+2*t)) * (1-t)^6 * (1+3*t)^2 / (512*t^6);
B42(t) = P(t) * (1-t)^5 / (2048 * t^4 * (3+t) * Q(t));
B4(t) = B41(t) + B42(t);
B5(t) = -sqrt(3)/90 * (1-t)^6 / (1+t)^(3/2) * (S(t) / (t*Q(t)))^(5/2);
C5(t) = B5(t) * (1 - 2*B4(t) / Xi(t))^(-5/2);
Kc(t) = C5(t) / gamma(-5/2);
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Gheorghe Coserea, Dec 29 2015
STATUS
approved