login
A266392
Decimal expansion of constant c in the asymptotic formula for connected labeled planar graphs on n vertices.
4
4, 1, 0, 4, 3, 6, 1, 1, 0, 0, 2, 5, 2, 5, 9, 7, 1, 2, 9, 1, 7, 8, 6, 0, 2, 1, 6, 0, 4, 0, 9, 8, 1, 0, 7, 2, 7, 6, 3, 1, 6, 3, 4, 0, 3, 6, 6, 4, 8, 0, 2, 3, 3, 9, 0, 4, 1, 2, 8, 6, 0, 1, 2, 8, 5, 0, 6, 6, 6, 2, 7, 8, 1, 9, 0, 8, 0, 5, 0, 2, 7, 3, 7, 4
OFFSET
-5,1
LINKS
Omer Gimenez, Marc Noy, Asymptotic enumeration and limit laws of planar graphs, J. Amer. Math. Soc. 22 (2009), 309-329.
FORMULA
Equals Kc(A266389), where function t->Kc(t) is defined in the PARI code.
Constant c where A096332(n) ~ c * A266390^n * n^(-7/2) * n!.
EXAMPLE
0.00000410436110025...
PROG
(PARI)
A266389= 0.6263716633;
Xi(t) = (1+3*t) * (1-t)^3 / ((16*t^3));
P1(t) = -2400 + 57952*t + 303862*t^2 + 466546*t^3;
P2(t) = (264775 + 76679*t + 11495*t^2 + 739*t^3) * t^4;
P(t) = P1(t) + P2(t);
Q(t) = 400 + 1808*t + 2527*t^2 + 1155*t^3 + 237*t^4 + 17*t^5;
S(t) = 144 + 592*t + 664*t^2 + 135*t^3 + 6*t^4 - 5*t^5;
B41(t) = log((1+t)/sqrt(1+2*t)) * (1-t)^6 * (1+3*t)^2 / (512*t^6);
B42(t) = P(t) * (1-t)^5 / (2048 * t^4 * (3+t) * Q(t));
B4(t) = B41(t) + B42(t);
B5(t) = -sqrt(3)/90 * (1-t)^6 / (1+t)^(3/2) * (S(t) / (t*Q(t)))^(5/2);
C5(t) = B5(t) * (1 - 2*B4(t) / Xi(t))^(-5/2);
Kc(t) = C5(t) / gamma(-5/2);
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Gheorghe Coserea, Dec 29 2015
STATUS
approved