login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A266390 Decimal expansion of exponential growth rate of number of labeled planar graphs on n vertices. 11
2, 7, 2, 2, 6, 8, 7, 7, 7, 6, 8, 5, 8, 8, 5, 7, 6, 4, 6, 7, 0, 7, 9, 4, 5, 8, 0, 5, 1, 4, 9, 4, 4, 5, 8, 2, 8, 7, 4, 8, 9, 8, 0, 1, 5, 8, 7, 7, 8, 6, 8, 3, 6, 0, 1, 0, 7, 2, 4, 0, 8, 6, 9, 4, 3, 6, 1, 9, 3, 3, 4, 9, 7, 6, 2, 6, 2, 3, 1, 3, 7, 2, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

2,1

LINKS

Gheorghe Coserea, Table of n, a(n) for n = 2..51000

Omer Giménez, Marc Noy, Estimating the Growth Constant of Labelled Planar Graphs, Mathematics and Computer Science III, Part of the series Trends in Mathematics 2004, pp. 133-139.

Omer Gimenez, Marc Noy, Asymptotic enumeration and limit laws of planar graphs, J. Amer. Math. Soc. 22 (2009), 309-329.

FORMULA

Equals 1/R(A266389), where function t->R(t) is defined in the PARI code.

A066537(n) ~ A266391 * A266390^n * n^(-7/2) * n!.

EXAMPLE

27.2268777685...

PROG

(PARI)

A266389= 0.6263716633;

A1(t)  = log(1+t) * (3*t-1) * (1+t)^3 / (16*t^3);

A2(t)  = log(1+2*t) * (1+3*t) * (1-t)^3 / (32*t^3);

A3(t)  = (1-t) * (185*t^4 + 698*t^3 - 217*t^2 - 160*t + 6);

A4(t)  = 64*t * (1+3*t)^2 * (3+t);

A(t)   = A1(t) + A2(t) + A3(t) / A4(t);

R(t)   = 1/16 * sqrt(1+3*t) * (1/t - 1)^3 * exp(A(t));

1/R(A266389)

CROSSREFS

Cf. A066537, A266389, A266391.

Sequence in context: A130335 A073246 A021790 * A171685 A011048 A307671

Adjacent sequences:  A266387 A266388 A266389 * A266391 A266392 A266393

KEYWORD

nonn,cons

AUTHOR

Gheorghe Coserea, Dec 28 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 10 16:22 EDT 2020. Contains 335577 sequences. (Running on oeis4.)