This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A133739 Expansion of q * (psi(q^6) / psi(q^3))^3 * phi(q)^5 / psi(q) in powers of q where phi(), psi() are Ramanujan theta functions. 4
 1, 9, 31, 45, 6, -45, 8, 117, 121, 54, 12, -9, 14, 72, 186, 261, 18, -207, 20, 270, 248, 108, 24, 63, 31, 126, 391, 360, 30, -270, 32, 549, 372, 162, 48, -171, 38, 180, 434, 702, 42, -360, 44, 540, 726, 216, 48, 207, 57, 279, 558, 630, 54, -693, 72, 936, 620 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 1..2500 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of eta(q^2)^23 * eta(q^3)^3 * eta(q^12)^6 / (eta(q)^9 * eta(q^4)^10 * eta(q^6)^9) in powers of q. Euler transform of period 12 sequence [ 9, -14, 6, -4, 9, -8, 9, -4, 6, -14, 9, -4, ...]. G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 18 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A134078. G.f.: f(x) + 6 * f(x^2) + 27 * f(x^3) + 20 * f(x^4) - 162 * f(x^6) + 108 * f(x^12) where f() is the g.f. of A000203. a(4*n + 2) = 9 * A134077(n). a(6*n + 5) = 6 * A098098(n). EXAMPLE G.f. = q + 9*q^2 + 31*q^3 + 45*q^4 + 6*q^5 - 45*q^6 + 8*q^7 + 117*q^8 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ 2 (EllipticTheta[ 2, 0, x^3] / EllipticTheta[ 2, 0, x^(3/2)])^3 (EllipticTheta[ 3, 0, x]^5 / EllipticTheta[ 2, 0, x^(1/2)]), {x, 0, n}]; (* Michael Somos, Oct 30 2015 *) QP=QPochhammer; CoefficientList[Series[QP[q^2]^23*QP[q^3]^3*QP[q^12]^6/( QP[q]^9*QP[q^4]^10*QP[q^6]^9), {q, 0, 50}], q] (* G. C. Greubel, Nov 16 2018 *) PROG (PARI) {a(n) = my(A); if ( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^23 * eta(x^3 + A)^3 * eta(x^12 + A)^6 / (eta(x + A)^9 * eta(x^4 + A)^10 * eta(x^6 + A)^9), n))}; (MAGMA) A := Basis( ModularForms( Gamma0(12), 2), 58); A[2] + 9*A[3] + 31*A[4] + 45*A[5]; /* Michael Somos, Oct 30 2015 */ CROSSREFS Cf. A000203, A098098, A134077, A134078. Sequence in context: A054310 A072887 A329651 * A266397 A288419 A168297 Adjacent sequences:  A133736 A133737 A133738 * A133740 A133741 A133742 KEYWORD sign AUTHOR Michael Somos, Oct 06 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 00:30 EST 2019. Contains 329988 sequences. (Running on oeis4.)