login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133739
Expansion of q * (psi(q^6) / psi(q^3))^3 * phi(q)^5 / psi(q) in powers of q where phi(), psi() are Ramanujan theta functions.
4
1, 9, 31, 45, 6, -45, 8, 117, 121, 54, 12, -9, 14, 72, 186, 261, 18, -207, 20, 270, 248, 108, 24, 63, 31, 126, 391, 360, 30, -270, 32, 549, 372, 162, 48, -171, 38, 180, 434, 702, 42, -360, 44, 540, 726, 216, 48, 207, 57, 279, 558, 630, 54, -693, 72, 936, 620
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^2)^23 * eta(q^3)^3 * eta(q^12)^6 / (eta(q)^9 * eta(q^4)^10 * eta(q^6)^9) in powers of q.
Euler transform of period 12 sequence [ 9, -14, 6, -4, 9, -8, 9, -4, 6, -14, 9, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 18 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A134078.
G.f.: f(x) + 6 * f(x^2) + 27 * f(x^3) + 20 * f(x^4) - 162 * f(x^6) + 108 * f(x^12) where f() is the g.f. of A000203.
a(4*n + 2) = 9 * A134077(n). a(6*n + 5) = 6 * A098098(n).
EXAMPLE
G.f. = q + 9*q^2 + 31*q^3 + 45*q^4 + 6*q^5 - 45*q^6 + 8*q^7 + 117*q^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 2 (EllipticTheta[ 2, 0, x^3] / EllipticTheta[ 2, 0, x^(3/2)])^3 (EllipticTheta[ 3, 0, x]^5 / EllipticTheta[ 2, 0, x^(1/2)]), {x, 0, n}]; (* Michael Somos, Oct 30 2015 *)
QP=QPochhammer; CoefficientList[Series[QP[q^2]^23*QP[q^3]^3*QP[q^12]^6/( QP[q]^9*QP[q^4]^10*QP[q^6]^9), {q, 0, 50}], q] (* G. C. Greubel, Nov 16 2018 *)
PROG
(PARI) {a(n) = my(A); if ( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^23 * eta(x^3 + A)^3 * eta(x^12 + A)^6 / (eta(x + A)^9 * eta(x^4 + A)^10 * eta(x^6 + A)^9), n))};
(Magma) A := Basis( ModularForms( Gamma0(12), 2), 58); A[2] + 9*A[3] + 31*A[4] + 45*A[5]; /* Michael Somos, Oct 30 2015 */
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Oct 06 2007
STATUS
approved