OFFSET
1,1
COMMENTS
Every positive integer is expressible as a sum of (at most) g(4) = 19 biquadratic numbers (Waring's problem). Davenport (1939) showed that G(4) = 16, meaning that all sufficiently large integers require only 16 biquadratic numbers.
LINKS
Eric Weisstein's World of Mathematics, Biquadratic Number.
FORMULA
EXAMPLE
a(1) = 19 = 2^4 + 1^4 + 1^4 + 1^4 = 16 + 1 + 1 + 1.
a(2) = 179 = 3^4 + 3^4 + 2^4 + 1^4 = 81 + 81 + 16 + 1.
a(3) = 4^4 + 3^4 + 3^4 + 1^4 = 256 + 81 + 81 + 1.
MATHEMATICA
Select[Union[ Flatten[Table[ a^4 + b^4 + c^4 + d^4, {a, 1, 10}, {b, 1, a}, {c, 1, b}, {d, 1, c}]]], PrimeQ]
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Dec 31 2007
STATUS
approved