login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133741
Decimal expansion of offset at which two unit disks overlap by half each's area.
1
8, 0, 7, 9, 4, 5, 5, 0, 6, 5, 9, 9, 0, 3, 4, 4, 1, 8, 6, 3, 7, 9, 2, 3, 4, 8, 0, 1, 3, 2, 6, 3, 0, 8, 8, 5, 8, 0, 4, 4, 7, 1, 9, 2, 9, 1, 4, 8, 1, 9, 6, 8, 4, 4, 5, 0, 0, 1, 9, 5, 2, 0, 3, 4, 6, 7, 7, 4, 1, 0, 9, 9, 9, 4, 2, 5, 9, 0, 7, 0, 7, 0, 0, 2, 4, 8, 6, 7, 8, 0, 3, 3, 0, 4, 4, 5, 4, 5, 7, 4, 1, 8, 9, 8, 2
OFFSET
0,1
LINKS
Max Chicky Fang, Closed Form for Half-Area Overlap Offset of 2 Unit Disks, arXiv:2403.10529 [math.GM], 2024.
Eric Weisstein's World of Mathematics, Circle-Circle Intersection
FORMULA
Equals sqrt(1+A003957) - sqrt(1-A003957) = sqrt(2-2*sqrt(1-A003957^2)) = 2*A086751. - Gleb Koloskov, Feb 26 2021
EXAMPLE
0.8079455065990344186379234801326308858044719291481968445...
MATHEMATICA
d0 = d /. FindRoot[ 2*ArcCos[d/2] - d/2*Sqrt[4 - d^2] == Pi/2, {d, 1}, WorkingPrecision -> 110]; RealDigits[d0][[1]][[1 ;; 105]] (* Jean-François Alcover, Oct 26 2012, after Eric W. Weisstein *)
PROG
(PARI) default(realprecision, 100); solve(x=0, 1, 2*acos(x/2) - (x/2)*sqrt(4-x^2) - Pi/2) \\ G. C. Greubel, Nov 16 2018
(PARI) d=solve(x=0, 1, cos(x)-x); sqrt(2-2*sqrt(1-d^2)) \\ Gleb Koloskov, Feb 27 2021
CROSSREFS
Cf. A003957. Equals twice A086751.
Sequence in context: A183001 A262522 A174849 * A066606 A048729 A003131
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Sep 22 2007
STATUS
approved