The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003957 The Dottie number: decimal expansion of root of cos(x) = x. 43
 7, 3, 9, 0, 8, 5, 1, 3, 3, 2, 1, 5, 1, 6, 0, 6, 4, 1, 6, 5, 5, 3, 1, 2, 0, 8, 7, 6, 7, 3, 8, 7, 3, 4, 0, 4, 0, 1, 3, 4, 1, 1, 7, 5, 8, 9, 0, 0, 7, 5, 7, 4, 6, 4, 9, 6, 5, 6, 8, 0, 6, 3, 5, 7, 7, 3, 2, 8, 4, 6, 5, 4, 8, 8, 3, 5, 4, 7, 5, 9, 4, 5, 9, 9, 3, 7, 6, 1, 0, 6, 9, 3, 1, 7, 6, 6, 5, 3, 1, 8, 4, 9, 8, 0, 1, 2, 4, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Let P be the point in quadrant I where the curve y=sin(x) meets the circle x^2+y^2=1. Let d be the Dottie number. Then P=(d,sin(d)), and d is the slope at P of the sine curve. - Clark Kimberling, Oct 07 2011 From Ben Branman, Dec 28 2011: (Start) The name "Dottie" is of no fundamental mathematical significance since it refers to a particular French professor who--no doubt like many other calculator users before and after her--noticed that whenever she typed a number into her calculator and hit the cosine button repeatedly, the result always converged to this value. The number is well-known, having appeared in numerous elementary works on algebra already by the late 1880s (e.g., Bertrand 1865, p. 285; Heis 1886, p. 468; Briot 1881, pp. 341-343), and probably much earlier as well. It is also known simply as the cosine constant, cosine superposition constant, iterated cosine constant, or cosine fixed point constant. Arakelian (1981, pp. 135-136; 1995) has used the Armenian small letter ayb (ա, the first letter in the Armenian alphabet) to denote this constant. (End) REFERENCES H. Arakelian, The Fundamental Dimensionless Values (Their Role and Importance for the Methodology of Science). [In Russian.] Yerevan, Armenia: Armenian National Academy of Sciences, 1981. A. Baker, Theorem 1.4 in Transcendental Number Theory. Cambridge, England: Cambridge University Press, 1975. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 (terms 0..499 from Ben Branman) Hrant Arakelian, New Fundamental Mathematical Constant: History, Present State and Prospects, Nonlinear Science Letters B, Vol. 1, No. 4, pp. 183-193. Mohammad K. Azarian, On the Fixed Points of a Function and the Fixed Points of its Composite Functions, International Journal of Pure and Applied Mathematics, Vol. 46, No. 1, 2008, pp. 37-44. Mathematical Reviews, MR2433713 (2009c:65129), March 2009. Zentralblatt MATH, Zbl 1160.65015. Trefor Bazett, What is cos( cos( cos( cos( cos( cos( cos( cos( cos( cos( cos( cos(...?? // Banach Fixed Point Theorem, YouTube video, 2022. J. Bertrand, Exercise III, in Traité d'algèbre, Vols. 1-2, 4th ed. Paris, France: Librairie Hachette et Cie, p. 285, 1865. Samuel R. Kaplan, The Dottie Number, Math. Magazine, 80 (No. 1, 2007), 73-74. T. H. Miller, On the imaginary roots of cos x = x, Proc. Edinburgh Math. Soc. 21, 160-162, 1902. V. Salov, Inevitable Dottie Number. Iterals of cosine and sine, arXiv preprint arXiv:1212.1027 [math.HO], 2012. David R. Stoutemyer, Inverse spherical Bessel functions generalize Lambert W and solve similar equations containing trigonometric or hyperbolic subexpressions or their inverses, arXiv:2207.00707 [math.GM], 2022. Eric Weisstein's World of Mathematics, Dottie Number FORMULA Equals twice A197002. - Hugo Pfoertner, Feb 20 2024 EXAMPLE 0.73908513321516064165531208767387340401341175890075746496568063577328... MAPLE evalf(solve(cos(x)=x, x), 140); # Alois P. Heinz, Feb 20 2024 MATHEMATICA RealDigits[ FindRoot[ Cos[x] == x, {x, {.7, 1} }, WorkingPrecision -> 120] [[1, 2] ]] [[1]] FindRoot[Cos[x] == x, {x, {.7, 1}}, WorkingPrecision -> 500][[1, 2]]][[1]] (* Ben Branman, Apr 12 2008 *) N[NestList[Cos, 1, 100], 20] (* Clark Kimberling, Jul 01 2019 *) RealDigits[Root[{# - Cos[#] &, 0.739085}], 10, 100][[1]] (* Eric W. Weisstein, Jul 15 2022 *) RealDigits[Sqrt[1 - (2 InverseBetaRegularized[1/2, 1/2, 3/2] - 1)^2], 10, 100][[1]] (* Eric W. Weisstein, Jul 15 2022 *) PROG (PARI) solve(x=0, 1, cos(x)-x) \\ Charles R Greathouse IV, Dec 31 2011 (Python) from sympy import Symbol, nsolve, cos x = Symbol("x") a = list(map(int, str(nsolve(cos(x)-x, 1, prec=110))[2:-2])) print(a) # Michael S. Branicky, Jul 15 2022 CROSSREFS Cf. A009442, A177413, A182503, A197002, A200309, A212112, A212113, A217066. Cf. A330119 (degrees-based analog). Sequence in context: A368654 A358184 A361604 * A021579 A139788 A093525 Adjacent sequences: A003954 A003955 A003956 * A003958 A003959 A003960 KEYWORD nonn,cons AUTHOR Leonid Broukhis EXTENSIONS More terms from David W. Wilson Additional references from Ben Branman, Dec 28 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 21:38 EDT 2024. Contains 372758 sequences. (Running on oeis4.)