login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A197002
Decimal expansion of xo, where P=(xo,yo) is the point nearest O=(0,0) in which a line y=mx meets the curve y=cos(x+Pi/4) orthogonally.
17
3, 6, 9, 5, 4, 2, 5, 6, 6, 6, 0, 7, 5, 8, 0, 3, 2, 0, 8, 2, 7, 6, 5, 6, 0, 4, 3, 8, 3, 6, 9, 3, 6, 7, 0, 2, 0, 0, 6, 7, 0, 5, 8, 7, 9, 4, 5, 0, 3, 7, 8, 7, 3, 2, 4, 8, 2, 8, 4, 0, 3, 1, 7, 8, 8, 6, 6, 4, 2, 3, 2, 7, 4, 4, 1, 7, 7, 3, 7, 9, 7, 2, 9, 9, 6, 8, 8, 0, 5, 3, 4, 6, 5, 8, 8, 3, 2, 6, 5, 9
OFFSET
0,1
COMMENTS
See the Mathematica program for a graph.
xo=0.36954256660758032082765604383693...
yo=0.40397275329951720931896174006631...
m=1.093169744985016922088153214160579...
|OP|=0.547499492185436214325204150357...
FORMULA
Equals d/2 = A003957/2, where d is the Dottie number. - Gleb Koloskov, Jun 16 2021
MAPLE
evalf(solve(cos(x)=x, x)/2, 140); # Alois P. Heinz, Feb 20 2024
MATHEMATICA
c = Pi/4;
xo = x /. FindRoot[x == Sin[x + c] Cos[x + c], {x, .8, 1.2}, WorkingPrecision -> 100]
RealDigits[xo] (* A197002 *)
m = 1/Sin[xo + c]
RealDigits[m] (* A197003 *)
yo = m*xo
d = Sqrt[xo^2 + yo^2]
Show[Plot[{Cos[x + c], yo - (1/m) (x - xo)}, {x, -Pi/4, 1}], ContourPlot[{y == m*x}, {x, 0, Pi}, {y, 0, 1}], PlotRange -> All, AspectRatio -> Automatic, AxesOrigin -> Automatic]
PROG
(PARI) solve(x=0, 1, cos(x)-x)/2 \\ Gleb Koloskov, Jun 16 2021
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 09 2011
STATUS
approved