The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227929 Decimal expansion of 36/Pi^4. 1
 3, 6, 9, 5, 7, 5, 3, 6, 1, 1, 6, 8, 6, 3, 6, 0, 6, 6, 8, 0, 9, 5, 0, 0, 1, 9, 7, 6, 1, 6, 2, 7, 2, 9, 8, 9, 1, 0, 5, 8, 0, 0, 8, 6, 6, 7, 3, 0, 9, 7, 7, 4, 5, 7, 8, 5, 4, 0, 4, 9, 2, 7, 6, 9, 9, 1, 0, 5, 1, 8, 5, 6, 3, 1, 9, 8, 6, 9, 1, 2, 8, 9, 6, 6, 6, 0, 5, 7, 4, 9, 4, 6, 3, 0, 4, 5, 7, 6, 6, 0, 2, 5, 7, 6, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Ernesto Cesaro asserted that lim n -> infinity A002321(n)/n = 36/Pi^4 using a fallacious argument. In fact this limit equals zero. REFERENCES Ernesto Cesaro, Sur diverses questions d'arithmetique. Mem. Soc. Roy. Sci. Liege 10 (1883), 1-350. Reprinted in Opere Scelte I, Vol. 1, pp. 10-362. Wladyslaw Narkiewicz, The development of prime number theory: from Euclid to Hardy and Littlewood, Springer-Verlag, New York, 2000, p. 31. LINKS FORMULA Equals Product_{primes p} (1 - 2/p^2 + 1/p^4). - Vaclav Kotesovec, Jun 20 2020 EXAMPLE 36/Pi^4 = 0.369575361168636066809500197.... MATHEMATICA RealDigits[N[36/Pi^4, 105]][[1]] PROG (MAGMA) pi:=Pi(RealField(107)); Reverse(Intseq(Floor(10^105*36/pi^4))) (PARI) default(realprecision, 105); x=360/Pi^4; for(n=1, 105, d=floor(x); x=(x-d)*10; print1(d, ", ")); CROSSREFS Cf. A000796, A002321. Sequence in context: A020850 A163341 A197002 * A019700 A151862 A067722 Adjacent sequences:  A227926 A227927 A227928 * A227930 A227931 A227932 KEYWORD nonn,cons,easy AUTHOR Arkadiusz Wesolowski, Oct 09 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 06:31 EDT 2021. Contains 347673 sequences. (Running on oeis4.)