|
|
A227930
|
|
Primes p such that p-1 and p+1 have an even Hamming weight.
|
|
3
|
|
|
11, 19, 47, 59, 67, 79, 107, 131, 179, 191, 211, 227, 239, 251, 271, 283, 307, 331, 367, 379, 419, 431, 443, 463, 491, 499, 563, 587, 659, 719, 787, 827, 859, 883, 911, 947, 971, 1019, 1039, 1051, 1087, 1123, 1163, 1171, 1187, 1231, 1259, 1279, 1291, 1327, 1423, 1451, 1459, 1471, 1483
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Primes such that both neighbors are evil (as defined in A001969).
Excluding 2, the intersection of A027697 (Odious primes: primes with odd number of 1's in binary expansion) and A095282 (Primes whose binary-expansion ends with an even number of 1's).
Equally, the intersection of A092246 (Odd "odious" numbers) and A095282.
Equally, odd odious primes p such that A007814(p+1) is even.
(End)
|
|
LINKS
|
|
|
MAPLE
|
read("transforms"):
isA000069 := proc(n)
if wt(n) mod 2 = 1 then
true;
else
false;
end if;
end proc:
for n from 1 do
if isprime(n) and not isA000069(n-1) and not isA000069(n+1) then
printf("%d, ", n) ;
end if;
(Scheme, with Antti Karttunen's IntSeq-library, two alternative implementations)
(define A227930 (MATCHING-POS 1 1 (lambda (n) (and (even? (A000120 (- n 1))) (even? (A000120 (+ n 1))) (prime? n)))))
(define A227930v2 (MATCHING-POS 1 1 (lambda (n) (and (odd? n) (odd? (A000120 n)) (even? (A007814 (+ n 1))) (prime? n))))) # Antti Karttunen, Dec 29 2013
|
|
MATHEMATICA
|
Select[Prime[Range[250]], And @@ EvenQ[DigitCount[# + {-1, 1}, 2, 1]] &] (* Amiram Eldar, Jul 24 2023 *)
|
|
PROG
|
(PARI) is(n)=hammingweight(n-1)%2==0 && hammingweight(n+1)%2==0 && isprime(n) \\ Charles R Greathouse IV, Oct 09 2013
|
|
CROSSREFS
|
Seems to consist of all primes in A233388.
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|