OFFSET
1,1
COMMENTS
Primes such that both neighbors are evil (as defined in A001969).
From Antti Karttunen, Dec 29 2013: (Start)
Excluding 2, the intersection of A027697 (Odious primes: primes with odd number of 1's in binary expansion) and A095282 (Primes whose binary-expansion ends with an even number of 1's).
Equally, odd odious primes p such that A007814(p+1) is even.
(End)
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MAPLE
read("transforms"):
isA000069 := proc(n)
if wt(n) mod 2 = 1 then
true;
else
false;
end if;
end proc:
for n from 1 do
if isprime(n) and not isA000069(n-1) and not isA000069(n+1) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Oct 08 2013
(Scheme, with Antti Karttunen's IntSeq-library, two alternative implementations)
(define A227930 (MATCHING-POS 1 1 (lambda (n) (and (even? (A000120 (- n 1))) (even? (A000120 (+ n 1))) (prime? n)))))
(define A227930v2 (MATCHING-POS 1 1 (lambda (n) (and (odd? n) (odd? (A000120 n)) (even? (A007814 (+ n 1))) (prime? n))))) # Antti Karttunen, Dec 29 2013
MATHEMATICA
Select[Prime[Range[250]], And @@ EvenQ[DigitCount[# + {-1, 1}, 2, 1]] &] (* Amiram Eldar, Jul 24 2023 *)
PROG
(PARI) is(n)=hammingweight(n-1)%2==0 && hammingweight(n+1)%2==0 && isprime(n) \\ Charles R Greathouse IV, Oct 09 2013
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Juri-Stepan Gerasimov, Oct 06 2013
EXTENSIONS
Entries checked by R. J. Mathar, Oct 08 2013
STATUS
approved