login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107201
Primes of the form 8x^2 + 11y^2.
2
11, 19, 43, 83, 107, 131, 139, 211, 227, 283, 307, 347, 491, 523, 547, 563, 571, 659, 739, 787, 811, 827, 1019, 1051, 1091, 1163, 1187, 1283, 1427, 1451, 1459, 1531, 1579, 1619, 1627, 1667, 1723, 1811, 1867, 1931, 1979, 1987, 2131, 2243, 2251
OFFSET
1,1
COMMENTS
Discriminant = -352. See A107132 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
Except for 11, the primes are congruent to {19, 35, 43, 51, 83} (mod 88). - T. D. Noe, May 02 2008
MATHEMATICA
QuadPrimes2[8, 0, 11, 10000] (* see A106856 *)
PROG
(Magma) [11] cat[ p: p in PrimesUpTo(4000) | p mod 88 in {19, 35, 43, 51, 83}]; // Vincenzo Librandi, Jul 28 2012
(PARI) list(lim)=my(v=List([11]), s=[19, 35, 43, 51, 83]); forprime(p=19, lim, if(setsearch(s, p%88), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 10 2017
CROSSREFS
Cf. A139827.
Sequence in context: A376338 A294993 A201719 * A189888 A227930 A224383
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 13 2005
STATUS
approved