login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form 8x^2 + 11y^2.
2

%I #20 Sep 08 2022 08:45:18

%S 11,19,43,83,107,131,139,211,227,283,307,347,491,523,547,563,571,659,

%T 739,787,811,827,1019,1051,1091,1163,1187,1283,1427,1451,1459,1531,

%U 1579,1619,1627,1667,1723,1811,1867,1931,1979,1987,2131,2243,2251

%N Primes of the form 8x^2 + 11y^2.

%C Discriminant = -352. See A107132 for more information.

%H Vincenzo Librandi and Ray Chandler, <a href="/A107201/b107201.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%F Except for 11, the primes are congruent to {19, 35, 43, 51, 83} (mod 88). - _T. D. Noe_, May 02 2008

%t QuadPrimes2[8, 0, 11, 10000] (* see A106856 *)

%o (Magma) [11] cat[ p: p in PrimesUpTo(4000) | p mod 88 in {19, 35, 43, 51, 83}]; // _Vincenzo Librandi_, Jul 28 2012

%o (PARI) list(lim)=my(v=List([11]), s=[19, 35, 43, 51, 83]); forprime(p=19, lim, if(setsearch(s, p%88), listput(v, p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 10 2017

%Y Cf. A139827.

%K nonn,easy

%O 1,1

%A _T. D. Noe_, May 13 2005