login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107199
Primes of the form 5x^2 + 17y^2.
2
5, 17, 37, 73, 97, 113, 173, 193, 197, 233, 277, 313, 317, 337, 397, 617, 653, 673, 677, 853, 857, 877, 997, 1013, 1093, 1117, 1153, 1193, 1213, 1217, 1297, 1433, 1493, 1553, 1637, 1693, 1697, 1873, 1877, 1933, 2017, 2113, 2137, 2153, 2213
OFFSET
1,1
COMMENTS
Discriminant = -340. See A107132 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Vincenzo Librandi)
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {5, 17, 37, 57, 73, 97, 113, 133, 173, 177, 193, 197, 233, 277, 313, 317, 333, 337} (mod 340). - T. D. Noe, May 02 2008
MATHEMATICA
QuadPrimes2[5, 0, 17, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(4000) | p mod 340 in {5, 17, 37, 57, 73, 97, 113, 133, 173, 177, 193, 197, 233, 277, 313, 317, 333, 337}]; // Vincenzo Librandi, Jul 28 2012
(PARI) list(lim)=my(v=List([5]), s=[17, 37, 57, 73, 97, 113, 133, 173, 177, 193, 197, 233, 277, 313, 317, 333, 337]); forprime(p=17, lim, if(setsearch(s, p%340), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 10 2017
CROSSREFS
Cf. A139827.
Sequence in context: A146781 A338277 A348228 * A048209 A181423 A146874
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 13 2005
STATUS
approved