Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #22 Sep 08 2022 08:45:18
%S 5,17,37,73,97,113,173,193,197,233,277,313,317,337,397,617,653,673,
%T 677,853,857,877,997,1013,1093,1117,1153,1193,1213,1217,1297,1433,
%U 1493,1553,1637,1693,1697,1873,1877,1933,2017,2113,2137,2153,2213
%N Primes of the form 5x^2 + 17y^2.
%C Discriminant = -340. See A107132 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A107199/b107199.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Vincenzo Librandi)
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {5, 17, 37, 57, 73, 97, 113, 133, 173, 177, 193, 197, 233, 277, 313, 317, 333, 337} (mod 340). - _T. D. Noe_, May 02 2008
%t QuadPrimes2[5, 0, 17, 10000] (* see A106856 *)
%o (Magma) [ p: p in PrimesUpTo(4000) | p mod 340 in {5, 17, 37, 57, 73, 97, 113, 133, 173, 177, 193, 197, 233, 277, 313, 317, 333, 337}]; // _Vincenzo Librandi_, Jul 28 2012
%o (PARI) list(lim)=my(v=List([5]), s=[17, 37, 57, 73, 97, 113, 133, 173, 177, 193, 197, 233, 277, 313, 317, 333, 337]); forprime(p=17, lim, if(setsearch(s, p%340), listput(v, p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 10 2017
%Y Cf. A139827.
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 13 2005