login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A197005
Decimal expansion of the slope of the line y=mx which meets the curve y=cos(x+Pi/3) orthogonally over the interval [0, 2*Pi] (as in A197004).
2
1, 0, 3, 7, 0, 5, 7, 0, 8, 3, 7, 3, 6, 5, 1, 5, 0, 0, 4, 6, 6, 1, 4, 7, 9, 5, 8, 3, 7, 5, 8, 4, 2, 7, 7, 6, 0, 5, 2, 2, 2, 3, 4, 3, 4, 3, 1, 3, 9, 2, 5, 1, 5, 3, 1, 6, 5, 5, 2, 9, 5, 2, 4, 2, 0, 6, 8, 4, 8, 7, 9, 8, 7, 2, 3, 9, 7, 5, 1, 8, 7, 8, 7, 4, 8, 1, 7, 2, 3, 2, 2, 4, 5, 5, 9, 3, 3, 2, 8, 0, 8, 9
OFFSET
1,3
COMMENTS
See the Mathematica program for a graph.
xo=0.255465286103853596695882696613320272654788...
yo=0.264932084602776862434116494762571068650190...
m=1.0370570837365150046614795837584277605222343...
|OP|=0.3680373919265496189530095416155881110455...
MATHEMATICA
c = Pi/3;
xo = x /. FindRoot[x == Sin[x + c] Cos[x + c], {x, .8, 1.2}, WorkingPrecision -> 100]
RealDigits[xo] (* A197004 *)
m = 1/Sin[xo + c]
RealDigits[m] (* A197005 *)
yo = m*xo
d = Sqrt[xo^2 + yo^2]
Show[Plot[{Cos[x + c], yo - (1/m) (x - xo)}, {x, -Pi/4, Pi/2}],
ContourPlot[{y == m*x}, {x, 0, Pi}, {y, 0, 1}], PlotRange -> All,
AspectRatio -> Automatic, AxesOrigin -> Automatic]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 10 2011
STATUS
approved