login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200309
Expansion of e.g.f.: 1/(cos(x) - x).
4
1, 1, 3, 12, 65, 440, 3571, 33824, 366113, 4458240, 60321091, 897774592, 14576528801, 256391130112, 4856647308787, 98567413125120, 2133825372539585, 49080991762153472, 1195339768057071619, 30729146849826701312, 831545527540481198465, 23627123985544955559936
OFFSET
0,3
COMMENTS
Radius of convergence |x| < r, where r = cos(r) = 0.739085133215160... (A003957).
The continued fraction converges in the whole complex plane, cut along |z|=infinity.
LINKS
S. N. Gladkovskii, Analysis Of The Continued Fractions (in Russian).
FORMULA
E.g.f.: E(x)=1/(cos(x) - x) = (1-x^2/((x-1)*G(0) + x^3))/(1-x); G(k)= 2*(2*k+1)*(k+1) - x^2 + 2*x^2*(2*k+1)*(k+1)/G(k+1); (continued fraction Euler's kind, 1-step). - Sergei N. Gladkovskii, Jan 08 2012
E.g.f.: 1/(G(0) - x) where G(k) = 1 - x^2/((4*k+1)*(4*k+2) - x^2*(4*k+1)*(4*k+2)/(x^2 - 4*(k+1)*(4*k+3)/G(k+1) )); - Sergei N. Gladkovskii, Dec 16 2012
a(n) ~ n!/((sin(r)+1)*r^(n+1)), where r = 0.73908513321516... is the root of the equation r = cos(r). - Vaclav Kotesovec, Jun 27 2013
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 12*x^3/3! + 65*x^4/4! + 440*x^5/5! +...
where 1/A(x) = 1 - x - x^2/2! + x^4/4! - x^6/6! +...
Special values.
A(Pi/5) = 10/(5*(sqrt(5)+1)/2 - 2*Pi) = 5.534081362740...
A(Pi/6) = 6/(3*sqrt(3) - Pi) = 2.920333635550...
A(Pi/8) = 8/(4*sqrt(2+sqrt(2)) - Pi) = 1.882599403781...
A(Pi/10) = 10/(5*sqrt(10+sqrt(20))/2 - Pi) = 1.5701119741529...
A(Pi/12) = 12/(6*sqrt(2+sqrt(3)) - Pi) = 1.4201994774470...
MATHEMATICA
CoefficientList[Series[1/(Cos[x]-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *)
PROG
(PARI) {a(n)=n!*polcoeff(1/(cos(x+x*O(x^n))-x), n)}
(PARI) x='x+O('x^30); Vec(serlaplace(1/(cos(x) - x))) \\ G. C. Greubel, Jul 10 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(Cos(x) - x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 10 2018
CROSSREFS
Sequence in context: A111262 A139134 A216373 * A256124 A109577 A368265
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 15 2011
STATUS
approved