The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200309 Expansion of e.g.f.: 1/(cos(x) - x). 4
 1, 1, 3, 12, 65, 440, 3571, 33824, 366113, 4458240, 60321091, 897774592, 14576528801, 256391130112, 4856647308787, 98567413125120, 2133825372539585, 49080991762153472, 1195339768057071619, 30729146849826701312, 831545527540481198465, 23627123985544955559936 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Radius of convergence |x| < r, where r = cos(r) = 0.739085133215160... (A003957). The continued fraction converges in the whole complex plane, cut along |z|=infinity. LINKS G. C. Greubel, Table of n, a(n) for n = 0..427 S. N. Gladkovskii, Analysis Of The Continued Fractions (in Russian). FORMULA E.g.f.: E(x)=1/(cos(x) - x) = (1-x^2/((x-1)*G(0) + x^3))/(1-x); G(k)= 2*(2*k+1)*(k+1) - x^2 + 2*x^2*(2*k+1)*(k+1)/G(k+1); (continued fraction Euler's kind, 1-step). - Sergei N. Gladkovskii, Jan 08 2012 E.g.f.: 1/(G(0) - x) where G(k) =  1 - x^2/((4*k+1)*(4*k+2) - x^2*(4*k+1)*(4*k+2)/(x^2 - 4*(k+1)*(4*k+3)/G(k+1) )); - Sergei N. Gladkovskii, Dec 16 2012 a(n) ~ n!/((sin(r)+1)*r^(n+1)), where r = 0.73908513321516... is the root of the equation r = cos(r). - Vaclav Kotesovec, Jun 27 2013 EXAMPLE E.g.f.: A(x) = 1 + x + 3*x^2/2! + 12*x^3/3! + 65*x^4/4! + 440*x^5/5! +... where 1/A(x) = 1 - x - x^2/2! + x^4/4! - x^6/6! +... Special values. A(Pi/5) = 10/(5*(sqrt(5)+1)/2 - 2*Pi) = 5.534081362740... A(Pi/6) = 6/(3*sqrt(3) - Pi) = 2.920333635550... A(Pi/8) = 8/(4*sqrt(2+sqrt(2)) - Pi) = 1.882599403781... A(Pi/10) = 10/(5*sqrt(10+sqrt(20))/2 - Pi) = 1.5701119741529... A(Pi/12) = 12/(6*sqrt(2+sqrt(3)) - Pi) = 1.4201994774470... MAPLE a:=series(1/(cos(x)-x), x=0, 22): seq(n!*coeff(a, x, n), n=0..21); # Paolo P. Lava, Mar 27 2019 MATHEMATICA CoefficientList[Series[1/(Cos[x]-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *) PROG (PARI) {a(n)=n!*polcoeff(1/(cos(x+x*O(x^n))-x), n)} (PARI) x='x+O('x^30); Vec(serlaplace(1/(cos(x) - x))) \\ G. C. Greubel, Jul 10 2018 (MAGMA) m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(Cos(x) - x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 10 2018 CROSSREFS Cf. A006154, A003957. Sequence in context: A111262 A139134 A216373 * A256124 A109577 A242575 Adjacent sequences:  A200306 A200307 A200308 * A200310 A200311 A200312 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 15 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 22:06 EDT 2021. Contains 345053 sequences. (Running on oeis4.)