login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109577
E.g.f.: 2x/[1-exp(-2x)+2exp(-x)].
0
0, 1, 0, 3, -12, 65, -450, 3577, -32424, 331137, -3757350, 46892681, -638447436, 9416929249, -149581289130, 2545707159465, -46213451575248, 891368532889601, -18204123410896590, 392431030262264329, -8904987308885931060, 212174197452256551393, -5296088301994320448530
OFFSET
0,4
FORMULA
E.g.f.: (2*x)/(1-exp(-2*x)+2*exp(-x))=2*x/(1 +2*G(0)) ; G(k)= 1-(2^k)/(2-4*x/(2*x+(2^k)*(k+1)/G(k+1))); (continued fraction Euler's kind, 1-step ). - Sergei N. Gladkovskii, Jan 08 2012
a(n) ~ n! * (-1)^(n+1) * (1-1/sqrt(2))/log(1+sqrt(2))^n. - Vaclav Kotesovec, Sep 26 2013
MAPLE
G:=2*x/(1-exp(-2*x)+2*exp(-x)): Gser:=series(G, x=0, 26): 0, seq(n!*coeff(Gser, x^n), n=1..23); # yields the signed sequence
MATHEMATICA
g[x_] = x/(-1 + Exp[ -2*x] - 2*Exp[ -x]) h[x_, n_] = Dt[g[x], {x, n}] a[x_] = Table[h[x, n], {n, 0, 50}]; b = 2*a[0]
CROSSREFS
Sequence in context: A216373 A200309 A256124 * A368265 A242575 A144297
KEYWORD
sign
AUTHOR
Roger L. Bagula, Jun 28 2005
STATUS
approved