login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109576
E.g.f.: x/(1+3x-4x^3)=x/[1-T(3,x)], where T(3,x) is a Chebyshev polynomial.
0
0, 1, -6, 54, -552, 6840, -97200, 1577520, -28667520, 578067840, -12798777600, 308836281600, -8065907942400, 226719600307200, -6824229456844800, 219010610827008000, -7465397891567616000, 269363867734241280000, -10256545055212904448000
OFFSET
0,3
COMMENTS
"Bernoulli numbers" for x/[1-T(3,x)].
FORMULA
D-finite with recurrence a(n) +(n+4)*a(n-1) -2*n*(n-1)*a(n-2) -4*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Aug 20 2021
MAPLE
G:=x/(1+3*x-4*x^3): Gser:=series(G, x=0, 23): 0, seq(n!*coeff(Gser, x^n), n=1..20); # yields the signed sequence
MATHEMATICA
g[x_] = x/(-1 + ChebyshevT[3, x]) h[x_, n_] = Dt[g[x], {x, n}] a[x_] = Table[h[x, n], {n, 0, 50}]; b = a[0]
CROSSREFS
Sequence in context: A098658 A357164 A357225 * A365843 A366014 A241843
KEYWORD
sign
AUTHOR
Roger L. Bagula, Jun 28 2005
STATUS
approved