login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357225
Coefficients in the power series A(x) such that: x*A(x)^5 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
6
1, 1, 6, 54, 542, 5950, 69089, 834807, 10387628, 132206325, 1713016233, 22520857313, 299667203315, 4028078782339, 54615552455056, 746073353306341, 10258385111897258, 141862903772876529, 1971827463536643265, 27532294076219156008, 386001188585539328720
OFFSET
0,3
FORMULA
G.f. A(x) satisfies:
(1) x*A(x)^5 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
(2) -x*A(x)^6 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) / A(x)^n.
(3) x*A(x)^5 = Product_{n>=1} (1 - x^(2*n)*A(x)) * (1 - x^(2*n-2)/A(x)) * (1 - x^(2*n)), due to the Jacobi triple product identity.
(4) -x*A(x)^6 = Product_{n>=1} (1 - x^(2*n)/A(x)) * (1 - x^(2*n-2)*A(x)) * (1 - x^(2*n)), due to the Jacobi triple product identity.
EXAMPLE
G.f.: A(x) = 1 + x + 6*x^2 + 54*x^3 + 542*x^4 + 5950*x^5 + 69089*x^6 + 834807*x^7 + 10387628*x^8 + 132206325*x^9 + 1713016233*x^10 + ...
such that
x*A(x)^5 = ... + x^12/A(x)^4 - x^6/A(x)^3 + x^2/A(x)^2 - 1/A(x) + 1 - x^2*A(x) + x^6*A(x)^2 - x^12*A(x)^3 + x^20*A(x)^4 + ... + (-1)^n * x^(n*(n+1)) * A(x)^n + ...
PROG
(PARI) {a(n, p=5) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( x*Ser(A)^p - sum(m=-ceil(sqrt(n)), ceil(sqrt(n)), (-1)^m*x^(m*(m+1))*Ser(A)^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 18 2022
STATUS
approved