login
A109575
E.g.f.: x/(1 + 12*x - 8*x^3) = x/[1-Hermite(3,x)].
1
0, 1, -24, 864, -41280, 2465280, -176670720, 14770990080, -1411388375040, 151717608161280, -18121032076492800, 2380798038166732800, -341232779553826406400, 52983548082050826240000, -8859638774461689652838400, 1587282455497648568795136000
OFFSET
0,3
COMMENTS
"Bernoulli numbers" for x/[1-Hermite(3,x)].
LINKS
MAPLE
G:=x/(1+12*x-8*x^3): Gser:=series(G, x=0, 20): 0, seq(n!*coeff(Gser, x^n), n=1..16); # yields the signed sequence
MATHEMATICA
g[x_] = x/(-1 + HermiteH[3, x]) h[x_, n_] = Dt[g[x], {x, n}] a[x_] = Table[h[x, n], {n, 0, 50}]; b = a[0]
With[{nmax = 50}, CoefficientList[Series[x/(1 + 12*x - 8*x^3), {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jul 12 2018 *)
PROG
(PARI) x='x+O('x^50); concat([0], Vec(serlaplace(x/(1 + 12*x - 8*x^3)))) \\ G. C. Greubel, Jul 12 2018
CROSSREFS
Sequence in context: A275088 A291111 A246215 * A160111 A227666 A107391
KEYWORD
sign
AUTHOR
Roger L. Bagula, Jun 28 2005
STATUS
approved