login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291111
Number of endofunctions on [n] such that the LCM of their cycle lengths equals five.
2
0, 0, 0, 0, 0, 24, 864, 24192, 653184, 18144000, 531365184, 16563076992, 551172885120, 19580825392128, 741547690884000, 29873618711000064, 1277121733631347968, 57795924098354577408, 2762004604309125452928, 139058300756829929472000, 7359536118308288021017344
OFFSET
0,6
LINKS
FORMULA
a(n) ~ (2*exp(6/5)-exp(1)) * n^(n-1). - Vaclav Kotesovec, Aug 18 2017
MAPLE
b:= proc(n, m) option remember; (k-> `if`(m>k, 0,
`if`(n=0, `if`(m=k, 1, 0), add(b(n-j, ilcm(m, j))
*binomial(n-1, j-1)*(j-1)!, j=1..n))))(5)
end:
a:= n-> add(b(j, 1)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..22);
MATHEMATICA
b[n_, m_] := b[n, m] = With[{k = 5}, If[m > k, 0, If[n == 0, If[m == k, 1, 0], Sum[b[n-j, LCM[m, j]] Binomial[n-1, j-1] (j-1)!, {j, 1, n}]]]];
a[n_] := If[n == 0, 0, Sum[b[j, 1] n^(n-j) Binomial[n-1, j-1], {j, 0, n}]];
a /@ Range[0, 22] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)
CROSSREFS
Column k=5 of A222029.
Sequence in context: A220176 A275563 A275088 * A246215 A109575 A160111
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 17 2017
STATUS
approved