login
A291111
Number of endofunctions on [n] such that the LCM of their cycle lengths equals five.
2
0, 0, 0, 0, 0, 24, 864, 24192, 653184, 18144000, 531365184, 16563076992, 551172885120, 19580825392128, 741547690884000, 29873618711000064, 1277121733631347968, 57795924098354577408, 2762004604309125452928, 139058300756829929472000, 7359536118308288021017344
OFFSET
0,6
LINKS
FORMULA
a(n) ~ (2*exp(6/5)-exp(1)) * n^(n-1). - Vaclav Kotesovec, Aug 18 2017
MAPLE
b:= proc(n, m) option remember; (k-> `if`(m>k, 0,
`if`(n=0, `if`(m=k, 1, 0), add(b(n-j, ilcm(m, j))
*binomial(n-1, j-1)*(j-1)!, j=1..n))))(5)
end:
a:= n-> add(b(j, 1)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..22);
MATHEMATICA
b[n_, m_] := b[n, m] = With[{k = 5}, If[m > k, 0, If[n == 0, If[m == k, 1, 0], Sum[b[n-j, LCM[m, j]] Binomial[n-1, j-1] (j-1)!, {j, 1, n}]]]];
a[n_] := If[n == 0, 0, Sum[b[j, 1] n^(n-j) Binomial[n-1, j-1], {j, 0, n}]];
a /@ Range[0, 22] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)
CROSSREFS
Column k=5 of A222029.
Sequence in context: A220176 A275563 A275088 * A246215 A109575 A160111
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 17 2017
STATUS
approved