login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003958 If n = Product p(k)^e(k) then a(n) = Product (p(k)-1)^e(k). 101
1, 1, 2, 1, 4, 2, 6, 1, 4, 4, 10, 2, 12, 6, 8, 1, 16, 4, 18, 4, 12, 10, 22, 2, 16, 12, 8, 6, 28, 8, 30, 1, 20, 16, 24, 4, 36, 18, 24, 4, 40, 12, 42, 10, 16, 22, 46, 2, 36, 16, 32, 12, 52, 8, 40, 6, 36, 28, 58, 8, 60, 30, 24, 1, 48, 20, 66, 16, 44, 24, 70, 4, 72, 36, 32, 18, 60, 24, 78, 4, 16 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Completely multiplicative.
Dirichlet inverse of A097945. - R. J. Mathar, Aug 29 2011
LINKS
Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 1000 terms from T. D. Noe)
FORMULA
Multiplicative with a(p^e) = (p-1)^e. - David W. Wilson, Aug 01 2001
a(n) = A000010(n) iff n is squarefree (see A005117). - Reinhard Zumkeller, Nov 05 2004
a(n) = abs(A125131(n)). - Tom Edgar, May 26 2014
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^4 / (315 * zeta(3)) = 1/(2*A082695) = 0.25725505075419... - Vaclav Kotesovec, Jun 14 2020
Dirichlet g.f.: Product_{p prime} 1 / (1 - p^(1-s) + p^(-s)). - Ilya Gutkovskiy, Feb 27 2022
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{primes p} (1 + (p^(1-s) - 2) / (1 - p + p^s)), (with a product that converges for s=2). - Vaclav Kotesovec, Feb 11 2023
MAPLE
a:= n-> mul((i[1]-1)^i[2], i=ifactors(n)[2]):
seq(a(n), n=1..80); # Alois P. Heinz, Sep 13 2017
MATHEMATICA
DirichletInverse[f_][1] = 1/f[1]; DirichletInverse[f_][n_] := DirichletInverse[f][n] = -1/f[1]*Sum[ f[n/d]*DirichletInverse[f][d], {d, Most[ Divisors[n]]}]; muphi[n_] := MoebiusMu[n]*EulerPhi[n]; Table[ DirichletInverse[ muphi][n], {n, 1, 81}] (* Jean-François Alcover, Dec 12 2011, after R. J. Mathar *)
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 1)^fi[[All, 2]])); Table[a[n], {n, 1, 50}] (* G. C. Greubel, Jun 10 2016 *)
PROG
(PARI) a(n)=if(n<1, 0, direuler(p=2, n, 1/(1-p*X+X))[n]) /* Ralf Stephan */
(Haskell)
a003958 1 = 1
a003958 n = product $ map (subtract 1) $ a027746_row n
-- Reinhard Zumkeller, Apr 09 2012, Mar 02 2012
(Python)
from math import prod
from sympy import factorint
def a(n): return prod((p-1)**e for p, e in factorint(n).items())
print([a(n) for n in range(1, 82)]) # Michael S. Branicky, Feb 27 2022
CROSSREFS
Sequence in context: A187202 A345046 A125131 * A326140 A082729 A326069
KEYWORD
nonn,mult,nice
AUTHOR
EXTENSIONS
Definition reedited (from formula) by Daniel Forgues, Nov 17 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 28 04:16 EST 2024. Contains 370379 sequences. (Running on oeis4.)