|
|
A003958
|
|
If n = Product p(k)^e(k) then a(n) = Product (p(k)-1)^e(k).
|
|
60
|
|
|
1, 1, 2, 1, 4, 2, 6, 1, 4, 4, 10, 2, 12, 6, 8, 1, 16, 4, 18, 4, 12, 10, 22, 2, 16, 12, 8, 6, 28, 8, 30, 1, 20, 16, 24, 4, 36, 18, 24, 4, 40, 12, 42, 10, 16, 22, 46, 2, 36, 16, 32, 12, 52, 8, 40, 6, 36, 28, 58, 8, 60, 30, 24, 1, 48, 20, 66, 16, 44, 24, 70, 4, 72, 36, 32, 18, 60, 24, 78, 4, 16
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Completely multiplicative.
a(n) = A000010(n) iff n is squarefree (see A005117). - Reinhard Zumkeller, Nov 05 2004
Dirichlet inverse of A097945. - R. J. Mathar, Aug 29 2011
a(n) = abs(A125131(n)). - Tom Edgar, May 26 2014
|
|
LINKS
|
T. D. Noe and Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 1000 terms from T. D. Noe)
Vaclav Kotesovec, Graph - the asymptotic ratio (10^7 terms)
Index to divisibility sequences
|
|
FORMULA
|
Multiplicative with a(p^e) = (p-1)^e. - David W. Wilson, Aug 01 2001
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^4 / (315 * zeta(3)) = 0.25725505075419... - Vaclav Kotesovec, Jun 14 2020
|
|
MAPLE
|
a:= n-> mul((i[1]-1)^i[2], i=ifactors(n)[2]):
seq(a(n), n=1..80); # Alois P. Heinz, Sep 13 2017
|
|
MATHEMATICA
|
DirichletInverse[f_][1] = 1/f[1]; DirichletInverse[f_][n_] := DirichletInverse[f][n] = -1/f[1]*Sum[ f[n/d]*DirichletInverse[f][d], {d, Most[ Divisors[n]]}]; muphi[n_] := MoebiusMu[n]*EulerPhi[n]; Table[ DirichletInverse[ muphi][n], {n, 1, 81}] (* Jean-François Alcover, Dec 12 2011, after R. J. Mathar *)
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 1)^fi[[All, 2]])); Table[a[n], {n, 1, 50}] (* G. C. Greubel, Jun 10 2016 *)
|
|
PROG
|
(PARI) a(n)=if(n<1, 0, direuler(p=2, n, 1/(1-p*X+X))[n]) /* Ralf Stephan */
(Haskell)
a003958 1 = 1
a003958 n = product $ map (subtract 1) $ a027746_row n
-- Reinhard Zumkeller, Apr 09 2012, Mar 02 2012
|
|
CROSSREFS
|
Cf. A003959, A168065, A168066, A027746, A006093, A027748, A124010.
Sequence in context: A187203 A187202 A125131 * A326140 A082729 A326069
Adjacent sequences: A003955 A003956 A003957 * A003959 A003960 A003961
|
|
KEYWORD
|
nonn,mult,nice
|
|
AUTHOR
|
Marc LeBrun
|
|
EXTENSIONS
|
Definition reedited (from formula) by Daniel Forgues, Nov 17 2009
|
|
STATUS
|
approved
|
|
|
|