login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003956 Order of complex Clifford group of degree 2^n arising in quantum coding theory. 13
8, 192, 92160, 743178240, 97029351014400, 203286581427673497600, 6819500449352277792129024000, 3660967964237442812098963052691456000, 31446995505814020383166371418359014222725120000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

B. Runge, Codes and Siegel modular forms, Discrete Math. 148 (1996), 175-204.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..20

A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.

G. Nebe, E. M. Rains and N. J. A. Sloane, The invariants of the Clifford groups, Des. Codes Crypt. 24 (2001), 99-121.

G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.

Index entries for sequences related to groups

MAPLE

a(n):= 2^(n^2+2*n+3)*mul(4^j-1, j=1..n); seq(a(n), n=0..10); # modified by G. C. Greubel, Sep 24 2019

MATHEMATICA

Table[2^(n^2+2n+3) Product[4^j-1, {j, n}], {n, 0, 10}] (* Harvey P. Dale, Nov 03 2017 *)

PROG

(PARI) vector(11, n, 2^(n^2 +2)*prod(j=1, n-1, 4^j-1) ) \\ G. C. Greubel, Sep 24 2019

(MAGMA) [n eq 0 select 8 else 2^((n+1)^2+2)*(&*[4^j-1: j in [1..n]]): n in [0..10]]; // G. C. Greubel, Sep 24 2019

(Sage) [2^((n+1)^2 +2)*product(4^j -1 for j in (1..n)) for n in (0..10)] # G. C. Greubel, Sep 24 2019

(GAP) List([0..10], n-> 2^((n+1)^2 +2)*Product([1..n], j-> 4^j -1) ); # G. C. Greubel, Sep 24 2019

CROSSREFS

Cf. A001309, A014116, A014115, A027672.

Equals twice A027638.

Sequence in context: A071303 A128406 A265269 * A204820 A041269 A172340

Adjacent sequences:  A003953 A003954 A003955 * A003957 A003958 A003959

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane, Peter Shor

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 6 11:38 EDT 2020. Contains 333273 sequences. (Running on oeis4.)