login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204820
a(n) = -4*a(n-1)*A001505(n-2), with a(1)=8.
1
8, -192, 161280, -638668800, 6974263296000, -162193467211776000, 6893871130369327104000, -483949753351926762700800000, 52208499391605859160162304000000, -8200911084433448356878294712320000000
OFFSET
1,1
COMMENTS
Sums of coefficients from (4n+1)th moments of binomial(m,k) * binomial(3*m,k); see Maple code below.
FORMULA
a(n)=-(1/8)*GAMMA(2*n-3/2)*GAMMA(n-1/2)*(-1)^n*64^n/Pi
EXAMPLE
The evaluation of sum(binomial(n, k)*binomial(3*n, k)*k^9, k=0..n) involves the polynomial 2187*n^11+6561*n^10-45927*n^9-28431*n^8+322947*n^7-257985*n^6-473445*n^5+726003*n^4-110482*n^3-189924*n^2+52624*n-4320, the sum of the coefficients of which is -192 = a(2).
MAPLE
with(PolynomialTools); polyn:=q->expand(simplify((1/(GAMMA(n-((2*floor((q+1)/4)-1))/(2))))*(1/sqrt(3))*GAMMA(n+1/3)*GAMMA(n+2/3)*(1/3)*(1/(27^(-n)))*GAMMA(n)*1/64^n*sum(binomial(n, k)*binomial(3*n, k)*k^q, k=0..n)*(1/(GAMMA(2*n-((2*floor(q/2)-1)/(2)))))*(2^((floor((1/2)*q+1/2)-1)+q)))); coefl:=h->CoefficientList(expand(polyn(h)), n); coe:=(d, b)->coefl(d)[b]; seq(sum(coe((4*d+1), b), b=1..(4*d+1)+floor(((4*d+1)+1)/4)+floor((4*d+1)/2)), d=1..6); seq(-(1/8)*GAMMA(2*n-3/2)*GAMMA(n-1/2)*(-1)^n*64^n/Pi, n=1..6);
CROSSREFS
KEYWORD
easy,sign
AUTHOR
John M. Campbell, Jan 19 2012
STATUS
approved