login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202948
a(n+1) = 3*A136016*a(n).
3
-3, -72, -7560, -1814400, -778377600, -523069747200, -506854585036800, -669048052248576000, -1154107890128793600000, -2520571632041285222400000, -6797981691615346244812800000
OFFSET
1,1
COMMENTS
Sums of coefficients from (3n+2)th moments of binomial(m,k)*binomial(2m,k): see Maple code below.
FORMULA
a(n)=-(1/6)*27^n*GAMMA(n-1/3)*GAMMA(n+1/3)*sqrt(3)/Pi.
EXAMPLE
The evaluation of sum(k^8 binomial(n,k) binomial(2n,k), k=0..n) involves the polynomial 64n^10 + 192n^9 - 1344n^8 - 1056n^7 + 8256n^6 - 3696n^5 - 9940n^4 + 7551n^3 + 348n^2 - 507n + 60, the sum of the coefficients of which is -72=a(2).
MAPLE
with(PolynomialTools); polyn := proc (q) options operator, arrow; 3^q*Pi*GAMMA(2*n)*(sum(k^q*binomial(n, k)*binomial(2*n, k), k = 0 .. n))/(27^n*sqrt(3)*GAMMA(n-floor((1/3)*q+1/3)+2/3)*GAMMA(n-floor((1/3)*q)+1/3)) end proc; coefl := proc (q) options operator, arrow; CoefficientList(expand(polyn(q)), n) end proc; coe := proc (j, h) options operator, arrow; coefl(j)[h] end proc; seq(sum(coe(3*r+2, k), k = 1 .. 5*r+3), r = 1 .. 8) ;
PROG
(PARI) print1(a=-3); for(n=2, 20, print1(", ", a*=27*n*(n-2)+24)) \\ Charles R Greathouse IV, Dec 27 2011
CROSSREFS
Sequence in context: A300967 A332721 A332747 * A213986 A156908 A182517
KEYWORD
sign,easy
AUTHOR
John M. Campbell, Dec 26 2011
STATUS
approved