login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064350
a(n) = (3*n)!/n!.
10
1, 6, 360, 60480, 19958400, 10897286400, 8892185702400, 10137091700736000, 15388105201717248000, 30006805143348633600000, 73096577329197271449600000, 217535414131691079834009600000
OFFSET
0,2
COMMENTS
Also a(n) = (((n)!)^2)*A006480(n). [corrected by Johannes W. Meijer, Mar 02 2009]
a(n) is the number of ways to partition the set {1,2,...,3n} into n blocks of size 3 and then linearly order the elements within each block. - Geoffrey Critzer, Dec 30 2012
LINKS
Karol A. Penson and Allan I. Solomon, Coherent states from combinatorial sequences, in: E. Kapuscik and A. Horzela (eds.), Quantum theory and symmetries, World Scientific, 2002, pp. 527-530; arXiv preprint, arXiv:quant-ph/0111151, 2001.
FORMULA
Integral representation as n-th moment of a positive function on a positive half-axis, in Maple notation: a(n)=int(x^n*BesselK(1/3, 2*sqrt(x/27))/(3*Pi*sqrt(x)), x=0..infinity), n=0, 1, ...
A recursive formula: a(n) = (27 * (n - 1)^2 + 27 * (n - 1) + 6) * a(n - 1) with a(0) = 1. An explicit formula following from the recursion equation: a(n) = (3/2)*27^n*GAMMA(n+2/3)*GAMMA(n+1/3)/(Pi*3^(1/2)). - Thomas Wieder, Nov 15 2004
E.g.f.: (of aerated sequence) 2*cos(arcsin((3*sqrt(3)*x/2)/3))/sqrt(4-27*x^2). - Paul Barry, Jul 27 2010
E.g.f.: (with interpolated zeros) exp(x^3). - Geoffrey Critzer, Dec 30 2012
Sum_{n>=1} 1/a(n) = A248759. - Amiram Eldar, Nov 15 2020
MATHEMATICA
Table[(3n)!/n!, {n, 0, 20}] (* Geoffrey Critzer, Dec 30 2012 *)
PROG
(PARI) { t=f=1; for (n=0, 70, if (n, t*=3*n*(3*n - 1)*(3*n - 2); f*=n); write("b064350.txt", n, " ", t/f) ) } \\ Harry J. Smith, Sep 12 2009
CROSSREFS
From Johannes W. Meijer, Mar 07 2009: (Start)
Equals A001525*3!
Equals row sums of A157704 and A157705. (End)
Sequence in context: A036281 A202367 A262179 * A069945 A086205 A173608
KEYWORD
nonn
AUTHOR
Karol A. Penson, Sep 18 2001
EXTENSIONS
a(11) from Harry J. Smith, Sep 12 2009
STATUS
approved