login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064349
Generating function: 1/((1-x)*(1-x^2)^2*(1-x^3)^3*(1-x^4)^4).
3
1, 1, 3, 6, 13, 19, 37, 58, 97, 143, 227, 328, 492, 688, 992, 1364, 1903, 2551, 3473, 4586, 6097, 7911, 10333, 13226, 16988, 21454, 27172, 33938, 42437, 52423, 64833, 79354, 97130, 117824, 142930, 172018, 206925, 247179, 295105, 350154, 415124
OFFSET
0,3
COMMENTS
Number of partitions of n into parts 1 (of one kind), 2 (of two kinds), 3 (of three kinds), and 4 (of 4 kinds). [Joerg Arndt, Jul 11 2013]
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 2, 1, 0, -9, -5, 2, 13, 21, -4, -17, -30, -13, 25, 28, 25, -13, -30, -17, -4, 21, 13, 2, -5, -9, 0, 1, 2, 1, -1).
PROG
(PARI) a(n) = floor( ([13, 28, -44][n%3+1]+(9/2)*(n\3+2)*((n+1)%3-1)) * (n\3+1)/729 - (n\2+1)*(-1)^(n\2) * (3*[-8, 11]+(n\2+2)*(2*[-1, 3]+(n\2+3)*(1/3)*[0, 1]))[n%2+1]/512 + (2*n^9 +270*n^8 +15600*n^7 +504000*n^6 +9977730*n^5 +124629750*n^4 +973069200*n^3 +4521339000*n^2 +11137512613*n +16461579435 +5103*(n+15)*(2*n^4 +120*n^3 +2440*n^2 +19200*n +48213)*(-1)^n) / 20065812480 ) \\ Tani Akinari, Jul 12 2013
(PARI) Vec(1/((1-x)*(1-x^2)^2*(1-x^3)^3*(1-x^4)^4)+O(x^66)) \\ Joerg Arndt, Jul 11 2013
CROSSREFS
The sequence of sequences A000007, A000012, A008805, A002597, A064349, etc. approaches A000219.
Essentially the same as A002598.
Cf. A002598.
Sequence in context: A080546 A080554 A259583 * A101965 A230370 A285246
KEYWORD
nonn
AUTHOR
Henry Bottomley, Sep 17 2001
STATUS
approved