login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Generating function: 1/((1-x)*(1-x^2)^2*(1-x^3)^3*(1-x^4)^4).
3

%I #20 Jun 25 2023 16:25:35

%S 1,1,3,6,13,19,37,58,97,143,227,328,492,688,992,1364,1903,2551,3473,

%T 4586,6097,7911,10333,13226,16988,21454,27172,33938,42437,52423,64833,

%U 79354,97130,117824,142930,172018,206925,247179,295105,350154,415124

%N Generating function: 1/((1-x)*(1-x^2)^2*(1-x^3)^3*(1-x^4)^4).

%C Number of partitions of n into parts 1 (of one kind), 2 (of two kinds), 3 (of three kinds), and 4 (of 4 kinds). [_Joerg Arndt_, Jul 11 2013]

%H Ray Chandler, <a href="/A064349/b064349.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_30">Index entries for linear recurrences with constant coefficients</a>, signature (1, 2, 1, 0, -9, -5, 2, 13, 21, -4, -17, -30, -13, 25, 28, 25, -13, -30, -17, -4, 21, 13, 2, -5, -9, 0, 1, 2, 1, -1).

%o (PARI) a(n) = floor( ([13, 28, -44][n%3+1]+(9/2)*(n\3+2)*((n+1)%3-1)) * (n\3+1)/729 - (n\2+1)*(-1)^(n\2) * (3*[-8, 11]+(n\2+2)*(2*[-1, 3]+(n\2+3)*(1/3)*[0, 1]))[n%2+1]/512 + (2*n^9 +270*n^8 +15600*n^7 +504000*n^6 +9977730*n^5 +124629750*n^4 +973069200*n^3 +4521339000*n^2 +11137512613*n +16461579435 +5103*(n+15)*(2*n^4 +120*n^3 +2440*n^2 +19200*n +48213)*(-1)^n) / 20065812480 ) \\ _Tani Akinari_, Jul 12 2013

%o (PARI) Vec(1/((1-x)*(1-x^2)^2*(1-x^3)^3*(1-x^4)^4)+O(x^66)) \\ _Joerg Arndt_, Jul 11 2013

%Y The sequence of sequences A000007, A000012, A008805, A002597, A064349, etc. approaches A000219.

%Y Essentially the same as A002598.

%Y Cf. A002598.

%K nonn

%O 0,3

%A _Henry Bottomley_, Sep 17 2001