login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064352
a(n) = (3*n)!/(2*n)!.
4
1, 3, 30, 504, 11880, 360360, 13366080, 586051200, 29654190720, 1700755056000, 109027350432000, 7725366544896000, 599555620984320000, 50578512186237235200, 4608264443634948096000, 450974292794344230912000
OFFSET
0,2
LINKS
Karol A. Penson and Allan I. Solomon, Coherent states from combinatorial sequences, in: E. Kapuscik and A. Horzela (eds.), Quantum theory and symmetries, World Scientific, 2002, pp. 527-530; arXiv preprint, arXiv:quant-ph/0111151, 2001.
FORMULA
Integral representation as n-th moment of a positive function on a positive half-axis: a(n) = Integral_{x>=0} (x^n*exp(-2*x/27)*(BesselK(1/3, 2*x/27) + BesselK(2/3, 2*x/27))*(sqrt(3)/(27*Pi))).
From Carleman's criterion Sum_{n>=1} a(n)^(-1/(2*n) = infinity the above solution of the Stieltjes moment problem is unique. - Karol A. Penson, Jan 13 2018
a(n) = n! * [x^n] 1/(1 - x)^(2*n+1). - Ilya Gutkovskiy, Jan 23 2018
Sum_{n>=1} 1/a(n) = A248760. - Amiram Eldar, Nov 15 2020
MATHEMATICA
Array[(3 #)!/(2 #)! &, 16, 0] (* Michael De Vlieger, Jan 13 2018 *)
PROG
(PARI) { f3=f2=1; for (n=0, 100, if (n, f3*=3*n*(3*n - 1)*(3*n - 2); f2*=2*n*(2*n - 1)); write("b064352.txt", n, " ", f3/f2) ) } \\ Harry J. Smith, Sep 12 2009
(Sage)
[falling_factorial(3*n, n) for n in (0..15)] # Peter Luschny, Jan 13 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Karol A. Penson, Sep 19 2001
EXTENSIONS
a(15) from Harry J. Smith, Sep 12 2009
STATUS
approved