OFFSET
0,2
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..100
Guillaume Chapuy, On the scaling of random Tamari intervals and Schnyder woods of random triangulations (with an asymptotic D-finite trick), arXiv:2403.18719 [math.CO], 2024.
Karol A. Penson and Allan I. Solomon, Coherent states from combinatorial sequences, in: E. Kapuscik and A. Horzela (eds.), Quantum theory and symmetries, World Scientific, 2002, pp. 527-530; arXiv preprint, arXiv:quant-ph/0111151, 2001.
FORMULA
Integral representation as n-th moment of a positive function on a positive half-axis: a(n) = Integral_{x>=0} (x^n*exp(-2*x/27)*(BesselK(1/3, 2*x/27) + BesselK(2/3, 2*x/27))*(sqrt(3)/(27*Pi))).
From Carleman's criterion Sum_{n>=1} a(n)^(-1/(2*n) = infinity the above solution of the Stieltjes moment problem is unique. - Karol A. Penson, Jan 13 2018
a(n) = n! * [x^n] 1/(1 - x)^(2*n+1). - Ilya Gutkovskiy, Jan 23 2018
Sum_{n>=1} 1/a(n) = A248760. - Amiram Eldar, Nov 15 2020
MATHEMATICA
Array[(3 #)!/(2 #)! &, 16, 0] (* Michael De Vlieger, Jan 13 2018 *)
PROG
(PARI) { f3=f2=1; for (n=0, 100, if (n, f3*=3*n*(3*n - 1)*(3*n - 2); f2*=2*n*(2*n - 1)); write("b064352.txt", n, " ", f3/f2) ) } \\ Harry J. Smith, Sep 12 2009
(Sage)
[falling_factorial(3*n, n) for n in (0..15)] # Peter Luschny, Jan 13 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Karol A. Penson, Sep 19 2001
EXTENSIONS
a(15) from Harry J. Smith, Sep 12 2009
STATUS
approved