login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (3*n)!/(2*n)!.
4

%I #42 Apr 02 2024 16:06:53

%S 1,3,30,504,11880,360360,13366080,586051200,29654190720,1700755056000,

%T 109027350432000,7725366544896000,599555620984320000,

%U 50578512186237235200,4608264443634948096000,450974292794344230912000

%N a(n) = (3*n)!/(2*n)!.

%H Harry J. Smith, <a href="/A064352/b064352.txt">Table of n, a(n) for n = 0..100</a>

%H Guillaume Chapuy, <a href="https://arxiv.org/abs/2403.18719">On the scaling of random Tamari intervals and Schnyder woods of random triangulations (with an asymptotic D-finite trick)</a>, arXiv:2403.18719 [math.CO], 2024.

%H Karol A. Penson and Allan I. Solomon, <a href="https://doi.org/10.1142/9789812777850_0066">Coherent states from combinatorial sequences</a>, in: E. Kapuscik and A. Horzela (eds.), Quantum theory and symmetries, World Scientific, 2002, pp. 527-530; <a href="https://arxiv.org/abs/quant-ph/0111151">arXiv preprint</a>, arXiv:quant-ph/0111151, 2001.

%F Integral representation as n-th moment of a positive function on a positive half-axis: a(n) = Integral_{x>=0} (x^n*exp(-2*x/27)*(BesselK(1/3, 2*x/27) + BesselK(2/3, 2*x/27))*(sqrt(3)/(27*Pi))).

%F From Carleman's criterion Sum_{n>=1} a(n)^(-1/(2*n) = infinity the above solution of the Stieltjes moment problem is unique. - _Karol A. Penson_, Jan 13 2018

%F a(n) = n! * [x^n] 1/(1 - x)^(2*n+1). - _Ilya Gutkovskiy_, Jan 23 2018

%F Sum_{n>=1} 1/a(n) = A248760. - _Amiram Eldar_, Nov 15 2020

%t Array[(3 #)!/(2 #)! &, 16, 0] (* _Michael De Vlieger_, Jan 13 2018 *)

%o (PARI) { f3=f2=1; for (n=0, 100, if (n, f3*=3*n*(3*n - 1)*(3*n - 2); f2*=2*n*(2*n - 1)); write("b064352.txt", n, " ", f3/f2) ) } \\ _Harry J. Smith_, Sep 12 2009

%o (Sage)

%o [falling_factorial(3*n, n) for n in (0..15)] # _Peter Luschny_, Jan 13 2018

%Y Cf. A001813, A166338, A248760.

%K nonn

%O 0,2

%A _Karol A. Penson_, Sep 19 2001

%E a(15) from _Harry J. Smith_, Sep 12 2009