login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166338
a(n) = (4*n)!/n!.
6
1, 24, 20160, 79833600, 871782912000, 20274183401472000, 861733891296165888000, 60493719168990845337600000, 6526062423950732395020288000000, 1025113885554181044609786839040000000
OFFSET
0,2
COMMENTS
Integral representation as n-th moment of a positive function on a positive halfaxis (solution of the Stieltjes moment problem), in Maple notation: a(n)=int(x^n*((1/16*(2*Pi^(3/2)*sqrt(2)*hypergeom([], [1/2, 3/4], -(1/256)*x)*sqrt(x) -2*Pi*sqrt(2)*hypergeom([], [3/4, 5/4], -(1/256)*x)*GAMMA(3/4)*x^(3/4) +sqrt(Pi)*GAMMA(3/4)^2*hypergeom([], [5/4, 3/2], -(1/256)*x)*x))*sqrt(2)/(GAMMA(3/4)*x^(5/4)*Pi^(3/2))), x=0..infinity), n=0,1... .
This solution may not be unique.
LINKS
FORMULA
G.f.: sum(a(n)*x^n/(n!)^3,n=0..infinity)=hypergeom([1/4, 1/2, 3/4], [1, 1], 256*x).
a(n) ~ 2*(1-1/(16*n)+1/(512*n^2)+331/(122880*n^3)+O(1/n^4)))*(2^n)^8/(((1/n)^n)^3*(exp(n))^3),n->infinity.
1/a(n) = n!*[x^n](cosh(x^(1/4))+cos(x^(1/4)))/2. - Peter Luschny, Jul 12 2012
MAPLE
A166338_list := proc(n) u:=z^(1/4); (cosh(u)+cos(u))/2:series(%, z, n+2):
seq(1/(i!*coeff(%, z, i)), i=0..n) end: A166338_list(9); # Peter Luschny, Jul 12 2012
MATHEMATICA
Table[(4n)!/n!, {n, 0, 10}] (* Harvey P. Dale, May 30 2015 *)
PROG
(Magma) [Factorial(4*n) / Factorial(n): n in [0..15]]; // Vincenzo Librandi, May 10 2016
CROSSREFS
Sequence in context: A067746 A111404 A167066 * A258874 A188961 A153303
KEYWORD
nonn
AUTHOR
Karol A. Penson, Oct 12 2009
STATUS
approved