login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153303
G.f.: cm4(x)^4 = Sum_{n>=0} a(n)*x^(4n)/(4n)!, where cm4(x) is defined by A153300.
1
1, 24, 24192, 140507136, 2716743794688, 132091533948616704, 13574624941450494738432, 2619220630292562698311827456, 870703020893737265865222361448448
OFFSET
0,2
FORMULA
Conjecture: a(n)/2^(4n-1) is an odd integer for n>0.
EXAMPLE
G.f.: cm4(x)^4 = 1 + 24*x^4/4! + 24192*x^8/8! + 140507136*x^12/12! +...
The functions:
cm4(x) = 1 + 6*x^4/4! + 2268*x^8/8! + 7434504*x^12/12! + 95227613712*x^16/16! +...
sm4(x) = x + 18*x^5/5! + 14364*x^9/9! + 70203672*x^13/13! + 1192064637456*x^17/17! +...
satisfy:
cm4(x)^4 - sm4(x)^4 = 1 ;
d/dx cm4(x) = sm4(x)^3 ;
d/dx sm4(x) = cm4(x)^3 .
PROG
(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x); for(i=0, n, A=1+intformal(intformal(A^3)^3)); n=4*n; n!*polcoeff(A^4, n))}
CROSSREFS
Cf. A153300 (cm4(x)), A153301 (sm4(x)), A153302 (cm4(x)^2+sm4(x)^2).
Sequence in context: A166338 A258874 A188961 * A272095 A188952 A258901
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 03 2009
STATUS
approved