login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A153301 Coefficient of x^(4n+1)/(4n+1)! in the Maclaurin expansion of sm4(x), which is a generalization of the Dixon elliptic function sm(x,0) defined by A104133. 3
1, 18, 14364, 70203672, 1192064637456, 52269828456672288, 4930307288899134335424, 884135650165992118901204352, 275721138550891190637445080842496 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..8.

FORMULA

Define cm4(x)^4 = 1 + sm4(x)^4, where cm4(x) is the g.f. of A153300, then:

d/dx sm4(x) = cm4(x)^3 ;

d/dx cm4(x) = sm4(x)^3 .

EXAMPLE

G.f.: sm4(x) = x + 18*x^5/5! + 14364*x^9/9! + 70203672*x^13/13! + 1192064637456*x^17/17! +...

cm4(x) = 1 + 6*x^4/4! + 2268*x^8/8! + 7434504*x^12/12! + 95227613712*x^16/16! +...

These functions satisfy: cm4(x)^4 - sm4(x)^4 = 1 where:

sm4(x)^4 = 24*x^4/4! + 24192*x^8/8! + 140507136*x^12/12! + 2716743794688*x^16/16! +...

RELATED EXPANSIONS:

sm4(x)^2 = 2*x^2/2! + 216*x^6/6! + 368928*x^10/10! + 3000945024*x^14/14! +...

cm4(x)^2 = 1 + 12*x^4/4! + 7056*x^8/8! + 28340928*x^12/12! + 419025809664*x^16/16! +...

sm4(x)^3 = 6*x^3/3! + 2268*x^7/7! + 7434504*x^11/11! + 95227613712*x^15/15! +...

cm4(x)^3 = 1 + 18*x^4/4! + 14364*x^8/8! + 70203672*x^12/12! + 1192064637456*x^16/16! +...

DERIVATIVES:

d/dx sm4(x) = cm4(x)^3 ;

d^2/dx^2 sm4(x) = 3*sm4(x)^3*cm4(x)^2 ;

d^3/dx^3 sm4(x) = 6*sm4(x)^6*cm4(x) + 9*sm4(x)^2*cm4(x)^5 ;

d^4/dx^4 sm4(x) = 6*sm4(x)^9 + 81*sm4(x)^5*cm4(x)^4 + 18*sm4(x)*cm4(x)^8 ;...

MATHEMATICA

With[{n = 8}, CoefficientList[Series[JacobiSN[Sqrt[2] x^(1/4), 1/2]/(x^(1/4) Sqrt[2 JacobiCN[Sqrt[2] x^(1/4), 1/2]]), {x, 0, n}], x] Table[(4 k + 1)!, {k, 0, n}]] (* Jan Mangaldan, Jan 04 2017 *)

PROG

(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x); for(i=0, n, A=intformal((1+intformal(A^3))^3)); n=4*n+1; n!*polcoeff(A, n))}

CROSSREFS

Cf. A104133; A153300, A153302 (cm4(x)^2 + sm4(x)^2).

Sequence in context: A060617 A222202 A201986 * A129042 A262359 A202155

Adjacent sequences:  A153298 A153299 A153300 * A153302 A153303 A153304

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jan 02 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 13:24 EST 2021. Contains 349563 sequences. (Running on oeis4.)