The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258901 E.g.f. satisfies: A(x) = Integral 1 + A(x)^4 dx. 10
 1, 24, 32256, 285272064, 8967114326016, 735868743566229504, 130778914961055994085376, 44390350317502907443360825344, 26290393222157669992962395876622336, 25377887922329300948014930852183837507584, 37855568618678541873143615775486954119570128896 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..112 Guo-Niu Han, Jing-Yi Liu, Divisibility properties of the tangent numbers and its generalizations, arXiv:1707.08882 [math.CO], 2017. See Table for k = 4 p. 8. FORMULA E.g.f. A(x) satisfies: (1) A(x) = Series_Reversion( Integral 1/(1+x^4) dx ). (2) A(x) = sqrt( tan( 2 * Integral A(x) dx ) ). Let C(x) = S'(x) such that S(x) = Series_Reversion( Integral 1/(1-x^4)^(1/4) dx ) is the e.g.f. of A258900, then e.g.f. A(x) of this sequence satisfies: (3) A(x) = S(x)/C(x), (4) A(x) = Integral 1/C(x)^4 dx, (5) A(x)^2 = S(x)^2/C(x)^2 = tan( 2 * Integral S(x)/C(x) dx ). a(n) ~ 2^(6*n + 14/3) * (4*n)! * n^(1/3) / (3^(1/3) * Gamma(1/3) * Pi^(4*n + 4/3)). - Vaclav Kotesovec, Jun 18 2015 EXAMPLE E.g.f.: A(x) = x + 24*x^5/5! + 32256*x^9/9! + 285272064*x^13/13! + 8967114326016*x^17/17! + 735868743566229504*x^21/21! +... where Series_Reversion(A(x)) = x - x^5/5 + x^9/9 - x^13/13 + x^17/17 +... Also, A(x) = S(x)/C(x) where S(x) = x - 6*x^5/5! - 1764*x^9/9! - 7700616*x^13/13! - 147910405104*x^17/17! - 8310698364852576*x^21/21! +...+ A258900(n)*x^(4*n+1)/(4*n+1)! +... C(x) = 1 - 6*x^4/4! - 1764*x^8/8! - 7700616*x^12/12! - 147910405104*x^16/16! - 8310698364852576*x^20/20! +...+ A258900(n)*x^(4*n)/(4*n)! +... such that C(x)^4 + S(x)^4 = 1. MATHEMATICA nmax=20; Table[CoefficientList[InverseSeries[Series[Integrate[1/(1+x^4), x], {x, 0, 4*nmax+1}], x], x][[4*n-2]] * (4*n-3)!, {n, 1, nmax+1}] (* Vaclav Kotesovec, Jun 18 2015 *) PROG (PARI) /* E.g.f. Series_Reversion( Integral 1/(1+x^4) dx ): */ {a(n) = local(A=x); A = serreverse( intformal( 1/(1 + x^4 + O(x^(4*n+2))) ) ); (4*n+1)!*polcoeff(A, 4*n+1)} for(n=0, 20, print1(a(n), ", ")) (PARI) /* E.g.f. A(x) = Integral 1 + A(x)^4 dx.: */ {a(n) = local(A=x); for(i=1, n+1, A = intformal( 1 + A^4 + O(x^(4*n+2)) )); (4*n+1)!*polcoeff(A, 4*n+1)} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A000182, A000831, A258900, A258880, A258925, A258927, A259112, A259113, A258970. Sequence in context: A153303 A272095 A188952 * A062322 A100733 A158664 Adjacent sequences:  A258898 A258899 A258900 * A258902 A258903 A258904 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 14 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 06:52 EST 2021. Contains 349543 sequences. (Running on oeis4.)