login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258901 E.g.f. satisfies: A(x) = Integral 1 + A(x)^4 dx. 10
1, 24, 32256, 285272064, 8967114326016, 735868743566229504, 130778914961055994085376, 44390350317502907443360825344, 26290393222157669992962395876622336, 25377887922329300948014930852183837507584, 37855568618678541873143615775486954119570128896 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..112

Guo-Niu Han, Jing-Yi Liu, Divisibility properties of the tangent numbers and its generalizations, arXiv:1707.08882 [math.CO], 2017. See Table for k = 4 p. 8.

FORMULA

E.g.f. A(x) satisfies:

(1) A(x) = Series_Reversion( Integral 1/(1+x^4) dx ).

(2) A(x) = sqrt( tan( 2 * Integral A(x) dx ) ).

Let C(x) = S'(x) such that S(x) = Series_Reversion( Integral 1/(1-x^4)^(1/4) dx ) is the e.g.f. of A258900, then e.g.f. A(x) of this sequence satisfies:

(3) A(x) = S(x)/C(x),

(4) A(x) = Integral 1/C(x)^4 dx,

(5) A(x)^2 = S(x)^2/C(x)^2 = tan( 2 * Integral S(x)/C(x) dx ).

a(n) ~ 2^(6*n + 14/3) * (4*n)! * n^(1/3) / (3^(1/3) * Gamma(1/3) * Pi^(4*n + 4/3)). - Vaclav Kotesovec, Jun 18 2015

EXAMPLE

E.g.f.: A(x) = x + 24*x^5/5! + 32256*x^9/9! + 285272064*x^13/13! + 8967114326016*x^17/17! + 735868743566229504*x^21/21! +...

where Series_Reversion(A(x)) = x - x^5/5 + x^9/9 - x^13/13 + x^17/17 +...

Also, A(x) = S(x)/C(x) where

S(x) = x - 6*x^5/5! - 1764*x^9/9! - 7700616*x^13/13! - 147910405104*x^17/17! - 8310698364852576*x^21/21! +...+ A258900(n)*x^(4*n+1)/(4*n+1)! +...

C(x) = 1 - 6*x^4/4! - 1764*x^8/8! - 7700616*x^12/12! - 147910405104*x^16/16! - 8310698364852576*x^20/20! +...+ A258900(n)*x^(4*n)/(4*n)! +...

such that C(x)^4 + S(x)^4 = 1.

MATHEMATICA

nmax=20; Table[CoefficientList[InverseSeries[Series[Integrate[1/(1+x^4), x], {x, 0, 4*nmax+1}], x], x][[4*n-2]] * (4*n-3)!, {n, 1, nmax+1}] (* Vaclav Kotesovec, Jun 18 2015 *)

PROG

(PARI) /* E.g.f. Series_Reversion( Integral 1/(1+x^4) dx ): */

{a(n) = local(A=x); A = serreverse( intformal( 1/(1 + x^4 + O(x^(4*n+2))) ) ); (4*n+1)!*polcoeff(A, 4*n+1)}

for(n=0, 20, print1(a(n), ", "))

(PARI) /* E.g.f. A(x) = Integral 1 + A(x)^4 dx.: */

{a(n) = local(A=x); for(i=1, n+1, A = intformal( 1 + A^4 + O(x^(4*n+2)) )); (4*n+1)!*polcoeff(A, 4*n+1)}

for(n=0, 20, print1(a(n), ", "))

CROSSREFS

Cf. A000182, A000831, A258900, A258880, A258925, A258927, A259112, A259113, A258970.

Sequence in context: A153303 A272095 A188952 * A062322 A100733 A158664

Adjacent sequences:  A258898 A258899 A258900 * A258902 A258903 A258904

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 14 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 06:52 EST 2021. Contains 349543 sequences. (Running on oeis4.)