login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258927
E.g.f. satisfies: A(x) = Integral 1 + A(x)^6 dx.
9
1, 720, 410572800, 4492717498368000, 348990783113936240640000, 118162808964225967251573964800000, 130226468530398571130647349959852032000000, 384446125794905598149974467971605129718661120000000, 2644398446216951886577241780697447635225293650237849600000000
OFFSET
0,2
COMMENTS
From Vaclav Kotesovec, Jun 17 2015: (Start)
In general, for k>2, if e.g.f. satisfies A(x) = Integral 1 + A(x)^k dx, then a(n) ~ k^(k/(k-1)) * n^(1/(k-1)) * (k*n)! * (k*sin(Pi/k)/Pi)^(k*n + k/(k-1)) / ((k-1)^(1/(k-1)) * Gamma(1/(k-1))).
(End)
LINKS
FORMULA
E.g.f. A(x) satisfies:
(1) A(x) = Series_Reversion( Integral 1/(1+x^6) dx ).
(2) A(x)^3 = tan( 3 * Integral A(x)^2 dx ).
Let C(x) = S'(x) such that S(x) = Series_Reversion( Integral 1/(1-x^6)^(1/6) dx ) is the e.g.f. of A258926, then e.g.f. A(x) of this sequence satisfies:
(3) A(x) = S(x)/C(x),
(4) A(x) = Integral 1/C(x)^6 dx,
(5) A(x)^3 = S(x)^3/C(x)^3 = tan( 3 * Integral S(x)^2/C(x)^2 dx ).
a(n) ~ 2^(6/5) * 3^(6*n+12/5) * (6*n)! * n^(1/5) / (5^(1/5) * Gamma(1/5) * Pi^(6*n+6/5)). - Vaclav Kotesovec, Jun 18 2015
EXAMPLE
E.g.f.: A(x) = x + 720*x^7/7! + 410572800*x^13/13! + 4492717498368000*x^19/19! +...
where Series_Reversion(A(x)) = x - x^7/7 + x^13/13 - x^19/19 + x^25/25 +...
Also, A(x) = S(x)/C(x) where
S(x) = x - 120*x^7/7! - 21859200*x^13/13! - 131273353728000*x^19/19! +...+ A258926(n)*x^(6*n+1)/(6*n+1)! +...
C(x) = 1 - 120*x^6/6! - 21859200*x^12/12! - 131273353728000*x^18/18! +...+ A258926(n)*x^(6*n)/(6*n)! +...
such that C(x)^6 + S(x)^6 = 1.
PROG
(PARI) /* E.g.f. Series_Reversion( Integral 1/(1+x^6) dx ): */
{a(n) = local(A=x); A = serreverse( intformal( 1/(1 + x^6 + O(x^(6*n+2))) ) ); (6*n+1)!*polcoeff(A, 6*n+1)}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* E.g.f. A(x) = Integral 1 + A(x)^6 dx.: */
{a(n) = local(A=x); for(i=1, n+1, A = intformal( 1 + A^6 + O(x^(6*n+2)) )); (6*n+1)!*polcoeff(A, 6*n+1)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A000182(n-1) (k=2), A258880 (k=3), A258901 (k=4), A258925 (k=5), A259112 (k=7), A259113 (k=8), A258926, A258994.
Sequence in context: A068300 A003792 A208192 * A195390 A261427 A210280
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 15 2015
STATUS
approved