Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jun 18 2015 16:35:34
%S 1,720,410572800,4492717498368000,348990783113936240640000,
%T 118162808964225967251573964800000,
%U 130226468530398571130647349959852032000000,384446125794905598149974467971605129718661120000000,2644398446216951886577241780697447635225293650237849600000000
%N E.g.f. satisfies: A(x) = Integral 1 + A(x)^6 dx.
%C From _Vaclav Kotesovec_, Jun 17 2015: (Start)
%C In general, for k>2, if e.g.f. satisfies A(x) = Integral 1 + A(x)^k dx, then a(n) ~ k^(k/(k-1)) * n^(1/(k-1)) * (k*n)! * (k*sin(Pi/k)/Pi)^(k*n + k/(k-1)) / ((k-1)^(1/(k-1)) * Gamma(1/(k-1))).
%C (End)
%H Vaclav Kotesovec, <a href="/A258927/b258927.txt">Table of n, a(n) for n = 0..75</a>
%F E.g.f. A(x) satisfies:
%F (1) A(x) = Series_Reversion( Integral 1/(1+x^6) dx ).
%F (2) A(x)^3 = tan( 3 * Integral A(x)^2 dx ).
%F Let C(x) = S'(x) such that S(x) = Series_Reversion( Integral 1/(1-x^6)^(1/6) dx ) is the e.g.f. of A258926, then e.g.f. A(x) of this sequence satisfies:
%F (3) A(x) = S(x)/C(x),
%F (4) A(x) = Integral 1/C(x)^6 dx,
%F (5) A(x)^3 = S(x)^3/C(x)^3 = tan( 3 * Integral S(x)^2/C(x)^2 dx ).
%F a(n) ~ 2^(6/5) * 3^(6*n+12/5) * (6*n)! * n^(1/5) / (5^(1/5) * Gamma(1/5) * Pi^(6*n+6/5)). - _Vaclav Kotesovec_, Jun 18 2015
%e E.g.f.: A(x) = x + 720*x^7/7! + 410572800*x^13/13! + 4492717498368000*x^19/19! +...
%e where Series_Reversion(A(x)) = x - x^7/7 + x^13/13 - x^19/19 + x^25/25 +...
%e Also, A(x) = S(x)/C(x) where
%e S(x) = x - 120*x^7/7! - 21859200*x^13/13! - 131273353728000*x^19/19! +...+ A258926(n)*x^(6*n+1)/(6*n+1)! +...
%e C(x) = 1 - 120*x^6/6! - 21859200*x^12/12! - 131273353728000*x^18/18! +...+ A258926(n)*x^(6*n)/(6*n)! +...
%e such that C(x)^6 + S(x)^6 = 1.
%o (PARI) /* E.g.f. Series_Reversion( Integral 1/(1+x^6) dx ): */
%o {a(n) = local(A=x); A = serreverse( intformal( 1/(1 + x^6 + O(x^(6*n+2))) ) ); (6*n+1)!*polcoeff(A, 6*n+1)}
%o for(n=0, 20, print1(a(n), ", "))
%o (PARI) /* E.g.f. A(x) = Integral 1 + A(x)^6 dx.: */
%o {a(n) = local(A=x); for(i=1, n+1, A = intformal( 1 + A^6 + O(x^(6*n+2)) )); (6*n+1)!*polcoeff(A, 6*n+1)}
%o for(n=0, 20, print1(a(n), ", "))
%Y Cf. A000182(n-1) (k=2), A258880 (k=3), A258901 (k=4), A258925 (k=5), A259112 (k=7), A259113 (k=8), A258926, A258994.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Jun 15 2015