login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258926
E.g.f.: S(x) = Series_Reversion( Integral 1/(1-x^6)^(1/6) dx ), where the constant of integration is zero.
1
1, -120, -21859200, -131273353728000, -6725237593471119360000, -1653993087378574357912780800000, -1405832822961504544259161592168448000000, -3334380558587161259470375739654344298987520000000, -18982929854690021819576777610944622891185796965990400000000
OFFSET
0,2
FORMULA
Let e.g.f. C(x) = Sum_{n>=0} a(n)*x^(6*n)/(6*n)! and e.g.f. S(x) = Sum_{n>=0} a(n)*x^(6*n+1)/(6*n+1)!, then C(x) and S(x) satisfy:
(1) C(x)^6 + S(x)^6 = 1,
(2) S'(x) = C(x),
(3) C'(x) = -S(x)^5/C(x)^4,
(4) C(x)^5 * C'(x) + S(x)^5 * S'(x) = 0,
(5) S(x)/C(x) = Integral 1/C(x)^6 dx,
(6) S(x)/C(x) = Series_Reversion( Integral 1/(1+x^6) dx ) = Series_Reversion( Sum_{n>=0} (-1)^n * x^(6*n+1)/(6*n+1) ).
(7) S(x)^3/C(x)^3 = tan( 3 * Integral S(x)^2/C(x)^2 dx ).
(8) C(x)^3 + I*S(x)^3 = exp( 3*I * Integral S(x)^2/C(x)^2 dx ).
EXAMPLE
E.g.f. with offset 0 is C(x) and e.g.f. with offset 1 is S(x) where:
C(x) = 1 - 120*x^6/6! - 21859200*x^12/12! - 131273353728000*x^18/18! -...
S(x) = x - 120*x^7/7! - 21859200*x^13/13! - 131273353728000*x^19/19! -...
such that C(x)^6 + S(x)^6 = 1:
C(x)^6 = 1 - 720*x^6/6! + 68428800*x^12/12! + 80406577152000*x^18/18! +...
S(x)^6 = 720*x^6/6! - 68428800*x^12/12! - 80406577152000*x^18/18! -...
Related Expansions.
(1) The series reversion of S(x) is Integral 1/(1-x^6)^(1/6) dx:
Series_Reversion(S(x)) = x + 120*x^7/7! + 46569600*x^13/13! + 449549388288000*x^19/19! +...
1/(1-x^6)^(1/6) = 1 + 120*x^6/6! + 46569600*x^12/12! + 449549388288000*x^18/18! +...
(2) d/dx S(x)/C(x) = 1/C(x)^6:
1/C(x)^6 = 1 + 720*x^6/6! + 410572800*x^12/12! + 4492717498368000*x^18/18! +...
S(x)/C(x) = x + 720*x^7/7! + 410572800*x^13/13! + 4492717498368000*x^19/19! + 348990783113936240640000*x^25/25! +...+ A258927(n)*x^(6*n+1)/(6*n+1)! +...
where
Series_Reversion(S(x)/C(x)) = x - x^7/7 + x^13/13 - x^19/19 + x^25/25 - x^31/31 +...
MATHEMATICA
nmax = 8; a[n_] := SeriesCoefficient[ InverseSeries[ Integrate[1/(1 - x^6)^(1/6), x] + O[x]^(6nmax+2), x], 6n+1]*(6n+1)!; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Apr 26 2017 *)
PROG
(PARI) /* E.g.f. Series_Reversion(Integral 1/(1-x^6)^(1/6) dx): */
{a(n)=local(S=x); S = serreverse( intformal( 1/(1-x^6 +x*O(x^(6*n)))^(1/6) )); (6*n+1)!*polcoeff(S, 6*n+1)}
for(n=0, 15, print1(a(n), ", "))
(PARI) /* E.g.f. C(x) with offset 0: */
{a(n)=local(S=x, C=1+x); for(i=1, n, S=intformal(C +x*O(x^(6*n))); C=1-intformal(S^5/C^4 +x*O(x^(6*n))); ); (6*n)!*polcoeff(C, 6*n)}
for(n=0, 21, print1(a(n), ", "))
(PARI) /* E.g.f. S(x) with offset 1: */
{a(n)=local(S=x, C=1+x); for(i=1, n+1, S=intformal(C +x*O(x^(6*n+1))); C=1-intformal(S^5/C^4 +x*O(x^(6*n+1))); ); (6*n+1)!*polcoeff(S, 6*n+1)}
for(n=0, 21, print1(a(n), ", "))
CROSSREFS
Sequence in context: A210279 A367569 A172626 * A357545 A294320 A268506
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jun 14 2015
STATUS
approved