login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367569
a(n) = Product_{k=0..n} (5*k)! / k!^5.
4
1, 120, 13608000, 2288430144000000, 699207483978843840000000000, 435858496811697532778806061260800000000000, 597507154003470929939550139366865942134606725120000000000000, 1898554530971015145216561379837863419725314413457243266261094236160000000000000000
OFFSET
0,2
FORMULA
a(n) = Product_{k=0..n} binomial(5*k,k) * binomial(4*k,k) * binomial(3*k,k) * binomial(2*k,k).
a(n) = A268506(n) / A000178(n)^5.
a(n) ~ A^(24/5) * Gamma(1/5)^(3/5) * Gamma(2/5)^(2/5) * Gamma(3/5)^(1/5) * 5^(5*n^2/2 + 3*n + 23/60) * exp(2*n - 2/5) / (n^(2*n + 7/5) * (2*Pi)^(2*n + 13/5)), where A is the Glaisher-Kinkelin constant A074962.
Equivalently, a(n) ~ A^(24/5) * Gamma(1/5)^(3/5) * Gamma(2/5)^(1/5) * 5^(5*n^2/2 + 3*n + 1/3) * exp(2*n - 2/5) / ((1 + sqrt(5))^(1/10) * 2^(2*n + 23/10) * Pi^(2*n + 12/5) * n^(2*n + 7/5)).
MATHEMATICA
Table[Product[(5*k)!/k!^5, {k, 0, n}], {n, 0, 10}]
Table[Product[Binomial[5*k, k] * Binomial[4*k, k] * Binomial[3*k, k] * Binomial[2*k, k], {k, 0, n}], {n, 0, 10}]
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 23 2023
STATUS
approved