login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A367570
a(n) = Product_{k=0..n} (6*k)! / k!^6.
4
1, 720, 5388768000, 739474163011584000000, 2400828978003787120431882240000000000, 213271990853093812884314351984207293234859212800000000000, 569474121824212834327144127568532894901251393782268174537457286512640000000000000
OFFSET
0,2
FORMULA
a(n) = Product_{k=0..n} binomial(6*k,k) * binomial(5*k,k) * binomial(4*k,k) * binomial(3*k,k) * binomial(2*k,k).
a(n) = A271946(n) / A000178(n)^6.
a(n) ~ A^(35/6) * Gamma(1/3)^(5/3) * 2^(3*n^2 + n - 215/72) * 3^(3*n^2 + 7*n/2 + 47/72) * exp(5*n/2 - 35/72) / (n^(5*n/2 + 125/72) * Pi^(5*n/2 + 10/3)), where A is the Glaisher-Kinkelin constant A074962.
MATHEMATICA
Table[Product[(6*k)!/k!^6, {k, 0, n}], {n, 0, 10}]
Table[Product[Binomial[6*k, k] * Binomial[5*k, k] * Binomial[4*k, k] * Binomial[3*k, k] * Binomial[2*k, k], {k, 0, n}], {n, 0, 10}]
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 23 2023
STATUS
approved