The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008978 a(n) = (5*n)!/(n!)^5. 21
 1, 120, 113400, 168168000, 305540235000, 623360743125120, 1370874167589326400, 3177459078523411968000, 7656714453153197981835000, 19010638202652030712978200000, 48334775757901219912115629238400, 125285878026462826569986857692288000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of paths of length 5n in Z^5 from (0,0,0,0,0) to (n,n,n,n,n). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..100 V. Batyrev, Review of "Mirror Symmetry and Algebraic Geometry", by D. A. Cox and S. Katz, Bull. Amer. Math. Soc., 37 (No. 4, 2000), 473-476. R. M. Dickau, 5-D shortest path diagrams R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011. FORMULA a(n) ~ 5^(5*n+1/2) / (4 * Pi^2 * n^2). - Vaclav Kotesovec, Mar 07 2014 From Peter Bala, Jul 12 2016: (Start) a(n) = binomial(2*n,n)*binomial(3*n,n)*binomial(4*n,n)*binomial(5*n,n) = ( [x^n](1 + x)^(2*n) ) * ( [x^n](1 + x)^(3*n) ) * ( [x^n](1 + x)^(4*n) ) * ( [x^n](1 + x)^(5*n) ) = [x^n]( F(x)^(120*n) ), where F(x) = 1 + x + 353*x^2 + 318986*x^3 + 408941594*x^4 + 633438203535*x^5 + 1105336091531052*x^6 + ... appears to have integer coefficients. For similar results see A000897, A002894, A002897, A006480, A008977, A186420 and A188662. (End) From Peter Bala, Jul 17 2016: (Start) a(n) = Sum_{k = 0..4*n} (-1)^k*binomial(5*n,n + k)*binomial(n + k,k)^5. a(n) = Sum_{k = 0..5*n} (-1)^(n+k)*binomial(5*n,k)*binomial(n + k,k)^5. (End) From Ilya Gutkovskiy, Nov 23 2017: (Start) O.g.f.: 4F3(1/5,2/5,3/5,4/5; 1,1,1; 3125*x). E.g.f.: 4F4(1/5,2/5,3/5,4/5; 1,1,1,1; 3125*x). (End) From Peter Bala, Feb 16 2020: (Start) a(m*p^k) == a(m*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers m and k - apply Mestrovic, equation 39, p. 12. a(n) = [(x*y*z*u)^n] (1 + x + y + z + u )^(5*n). (End) a(n) = 120*A322252(n). - R. J. Mathar, Jun 21 2023 a(n) = a(n-1)*5*(5*n - 1)*(5*n - 2)*(5*n - 3)*(5*n - 4)/n^4. - Neven Sajko, Jul 21 2023 MATHEMATICA Table[(5 n)!/(n)!^5, {n, 0, 20}] (* Vincenzo Librandi, Mar 08 2014 *) PROG (Magma) [Factorial(5*n)/Factorial(n)^5: n in [0..10]]; // Vincenzo Librandi, Mar 08 2014 (PARI) a(n) = (5*n)!/(n!)^5; \\ Michel Marcus, Mar 08 2014 CROSSREFS Cf. A000984, A006480, A008977, A002894, A002897, A186420, A188662, A001460. Row 5 of A187783. Sequence in context: A279579 A159735 A157879 * A077692 A322917 A184127 Adjacent sequences: A008975 A008976 A008977 * A008979 A008980 A008981 KEYWORD nonn,easy AUTHOR N. J. A. Sloane. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 20:28 EDT 2024. Contains 373401 sequences. (Running on oeis4.)